1
|
Raclariu-Manolică AC, Mauvisseau Q, Paranaiba R, De Boer HJ, Socaciu C. Authentication of milk thistle commercial products using UHPLC-QTOF-ESI + MS metabolomics and DNA metabarcoding. BMC Complement Med Ther 2023; 23:257. [PMID: 37480124 PMCID: PMC10360273 DOI: 10.1186/s12906-023-04091-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Milk thistle is one of the most popular hepatoprotectants, and is often sold in combination with other ingredients. Botanical supplements are known to be vulnerable to contamination and adulteration, and emerging technologies show promise to improve their quality control. METHODS Untargeted and semi-targeted metabolomics based on UHPLC-QTOF-ESI+MS techniques, UV spectrometry, and DNA metabarcoding using Illumina MiSeq were used to authenticate eighteen milk thistle botanical formulations (teas, capsules, tablets, emulsion). RESULTS Untargeted metabolomics separated 217 molecules and by multivariate analysis the discrimination between the different preparations was established. The semi-targeted metabolomics focused on 63 phytochemicals, mainly silymarin flavonolignans and flavonoids, that may be considered as putative biomarkers of authenticity. All formulations contained molecules from silymarin complexes at different levels. The quantitative evaluation of silybins was done using in parallel UV spectrometry and UHPLC-QTOF-ESI+MS and their correlations were compared. DNA metabarcoding detected milk thistle in eleven out of sixteen retained preparations, whereas two others had incomplete evidence of milk thistle despite metabolomics validating specific metabolites, e.g., silymarin complex, identified and quantified in all samples. Meanwhile, the DNA metabarcoding provided insights into the total species composition allowing the interpretation of the results in a broad context. CONCLUSION Our study emphasizes that combining spectroscopic, chromatographic, and genetic techniques bring complementary information to guarantee the quality of the botanical formulations.
Collapse
Affiliation(s)
- Ancuța Cristina Raclariu-Manolică
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Alexandru cel Bun Street, 6, Piatra Neamț, 610004, Romania.
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, Oslo, 0318, Norway.
| | - Quentin Mauvisseau
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, Oslo, 0318, Norway
| | - Renato Paranaiba
- Natural Products Laboratory, School of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, 70910-900, Brazil
- DNA Laboratory, National Institute of Criminalistics, Brazilian Federal Police, SAIS Quadra 7, Lote 23, Brasília, DF, 70610-200, Brazil
| | - Hugo J De Boer
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, Oslo, 0318, Norway
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Mănăştur Street, nr. 3-5, Cluj Napoca, 400372, Romania
- BIODIATECH- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, Trifoiului Street 12G, Cluj-Napoca, 400478, Romania
| |
Collapse
|
2
|
Sun Y, Kong L, Zhang AH, Han Y, Sun H, Yan GL, Wang XJ. A Hypothesis From Metabolomics Analysis of Diabetic Retinopathy: Arginine-Creatine Metabolic Pathway May Be a New Treatment Strategy for Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:858012. [PMID: 35399942 PMCID: PMC8987289 DOI: 10.3389/fendo.2022.858012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic retinopathy is one of the serious complications of diabetes, which the leading causes of blindness worldwide, and its irreversibility renders the existing treatment methods unsatisfactory. Early detection and timely intervention can effectively reduce the damage caused by diabetic retinopathy. Metabolomics is a branch of systems biology and a powerful tool for studying pathophysiological processes, which can help identify the characteristic metabolic changes marking the progression of diabetic retinopathy, discover potential biomarkers to inform clinical diagnosis and treatment. This review provides an update on the known metabolomics biomarkers of diabetic retinopathy. Through comprehensive analysis of biomarkers, we found that the arginine biosynthesis is closely related to diabetic retinopathy. Meanwhile, creatine, a metabolite with arginine as a precursor, has attracted our attention due to its important correlation with diabetic retinopathy. We discuss the possibility of the arginine-creatine metabolic pathway as a therapeutic strategy for diabetic retinopathy.
Collapse
Affiliation(s)
- Ye Sun
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Kong
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guang-Li Yan
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| |
Collapse
|
3
|
Yuan Y, Dong FX, Liu X, Xiao HB, Zhou ZG. Liquid Chromatograph-Mass Spectrometry-Based Non-targeted Metabolomics Discovery of Potential Endogenous Biomarkers Associated With Prostatitis Rats to Reveal the Effects of Magnoflorine. Front Pharmacol 2021; 12:741378. [PMID: 34790120 PMCID: PMC8591080 DOI: 10.3389/fphar.2021.741378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Magnoflorine (Mag) has multiple pharmacological activities for the prevention and treatment of prostatitis. However, its molecular mechanisms andpharmacological targets are not clear. In this study, the ultra-performance liquid tandem mass spectrometry-based metabolomics method was used to clarify the intervention of Mag against prostatitis and the biological mechanism. A total of 25 biomarkers associated with the prostatitis model were identified by metabolomics, and a number of metabolic pathways closely related to the model were obtained by MetPA analysis. After given Mag treatment, the results of each indicator were shown that Mag alkaloid could inhibit the development of prostatitis effectively. We found that Mag had regulative effects on potential biomarkers of prostatitis model, which can regulate them to the control group. Our results indicated that alkaloids have an effective intervention therapy for prostatitis, and five types of metabolic pathways closely related to prostatitis model were obtained, including phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, tyrosine metabolism, arginine and proline metabolism, glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism. This study has provided the basic experimental data for the development of Mag in the prevention and treatment of prostatitis.
Collapse
Affiliation(s)
- Yin Yuan
- Department of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fei-Xue Dong
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Liu
- Department of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hong-Bin Xiao
- Department of Basic Medicine, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhong-Guang Zhou
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Pandohee J, Kyereh E, Kulshrestha S, Xu B, Mahomoodally MF. Review of the recent developments in metabolomics-based phytochemical research. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34672234 DOI: 10.1080/10408398.2021.1993127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phytochemicals are important bioactive components present in natural products. Although the health benefits of many food products are well-known and accepted as a common knowledge, the identity of the main bioactive molecules and the mechanism by which they interact in the body of human are often unknown. It was only in the last 30 years when the field of metabolomics had matured that the identification of such molecules with bioactivity has been made possible through the development of instruments to separate and computational techniques to characterize complex samples. This in turn has enabled in vitro studies to quantify the biological activity of the respective phytochemical either in mice models or in humans. In this review, the importance of key dietary phytochemicals such as phenolic acids, flavonoids, carotenoids, resveratrol, curcumin, and capsaicinoids are discussed together with their potential functions for human health. Untargeted metabolomics, in particular, liquid chromatography mass spectrometry, is the most used method to isolate, identify and profile bioactive compounds in the study of phytochemicals in foods. The application of metabolomics in drug discovery is a common practice nowadays and has boosted the drug and/or supplement manufacturing sector.HighlightsPhytochemicals are beneficial compounds for human healthPhytochemicals are plant-based bioactive and obtainable from natural productsUntargeted metabolomics has boosted the discovery of phytochemicals from foodTargeted metabolomics is key in the authentication and screening of phytochemicalsMetabolomics of phytochemicals is reshaping the road to drug and supplement manufacture.
Collapse
Affiliation(s)
- Jessica Pandohee
- Centre for Crop and Disease Management, Curtin University, Perth, Western Australia, Australia.,Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | | | - Saurabh Kulshrestha
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | | |
Collapse
|
5
|
Yang M, Yan T, Yu M, Kang J, Gao R, Wang P, Zhang Y, Zhang H, Shi L. Advances in understanding of health‐promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minmin Yang
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Tao Yan
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Meng Yu
- The Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jie Kang
- Physical Education Institute Shaanxi Normal University Xi'an China
| | - Ruoxi Gao
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Peng Wang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Yuhuan Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Huafeng Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
| | - Lin Shi
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
- Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
6
|
Zhang Y, Zhang H, Shi J, Qiu S, Fei Q, Zhu F, Wang J, Huang Y, Tang D, Chen B. Metabolomics Based Comparison on the Biomarkers between Panax Notoginseng and its Counterfeit Gynura Segetum in Rats. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190802142911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Because of the similar appearance of Gynura segetum and panax notoginseng,
the patients often mistakenly use Gynura segetum as Panax notoginseng, which causes serious liver
damage. There is no comparative study on the metabolism of Gynura segetum and Panax notoginseng
in the literature. This study was conducted to compare the difference between Panax notoginseng and
its counterfeit Gynura segetum by using metabolomics method.
Methods:
In this paper, an ultra performance liquid chromatography coupled to quadrupole time-offlight
mass spectrometric(UPLC-Q/TOF/MS) were used to detect the type of endogenous metabolites
in urine and plasma of three groups (normal group, ethanol extract of panax notoginseng, decoction of
Gynura segetum respectively, and different multivariate statistical analysis methods were established.
Results:
In this experiment, main urine biomarkers were L-glutamate, L-methionine, cytidine, and Ltyrosine
in the Panax notoginseng group, which are phytosphingosine, creatine and sphinganine in the
Gynura segetum group. The plasma biomarkers identified in the Panax notoginseng group were arachidonic
acid, L-tyrosine, linoleic acid, alpha-linolenoyl ethanolamide and lysoPC (15:0), and in the
Gynura segetum group are L-arginine, L-valine, arachidonic acid and LysoPC(18:2(9Z,12Z)).
Conclusion:
There are significant difference between Panax notoginseng and Gynura segetum in biomarkers
from the perspective of metabolomics in the body.
Collapse
Affiliation(s)
- Yin Zhang
- Jiangsu Provincial Key Laboratory for New Drug Research and Clinical Pharmacy of Xuzhou Medical University, Xuzhou 221004, China
| | - Haixia Zhang
- Department of Pharmacy, Nanjing university medical school Affiliated Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Jianfeng Shi
- Clinical laboratory, Jiangsu Province Academy of Traditional Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China
| | - Shoubei Qiu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China
| | - Qianqian Fei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China
| | - Yiping Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China
| | - Daoquan Tang
- Jiangsu Provincial Key Laboratory for New Drug Research and Clinical Pharmacy of Xuzhou Medical University, Xuzhou 221004, China
| | - Bin Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China
| |
Collapse
|
7
|
Wang XX, Yu PC, Li J. High-Throughput Metabolomics for Identification of Metabolic Pathways and Deciphering the Effect Mechanism of Dioscin on Rectal Cancer From Cell Metabolic Profiles Coupled With Chemometrics Analysis. Front Pharmacol 2020; 11:68. [PMID: 32180713 PMCID: PMC7059176 DOI: 10.3389/fphar.2020.00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/24/2020] [Indexed: 01/05/2023] Open
Abstract
High-throughput liquid chromatography-mass spectrometry (LC-MS)-based metabolomics can provide the holistic analysis of the low molecular weight endogenous metabolites in cells and reflect the changes of cellular regulation and metabolic pathways. Our study designed to reveal the potentially pharmacological effects of dioscin on SW480 rectal cancer cells using nontargeted metabolomics method to probe into small molecular metabolites and pathway changes. After the cell assay of proliferation, apoptosis, migration, and invasion, the dioscin-treated cell samples were prepared for nontargeted metabolomics analysis based on LC-MS tool to describe the metabolic profiles. Dioscin has prevented cell proliferation and accelerated cell apoptosis, and it also inhibited the SW480 rectal cancer cells' migration and invasion. A total of 22 metabolites were selected as promising biomarkers of pharmacological reaction of dioscin to rectal cancer, and eight highly correlated pathways including D-glutamine and D-glutamate metabolism, pyruvate metabolism, arachidonic acid metabolism, phenylalanine metabolism, tryptophan metabolism, glycolysis or gluconeogenesis, citrate cycle (TCA cycle), and butanoate metabolism were identified. It showed that strategies based on cell metabolomics are helpful tools to discover the small molecular metabolites to elucidate the action mechanism of drug.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Heilongjiang Province Land Reclamation Headquarters General Hospital, Heilongjiang Agriculture and Reclamation Bureau, Harbin, China
| | - Peng-cheng Yu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Jun Li
- Department of Orthopedics, The Affiliated First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Ren L, Guo XY, Gao F, Jin ML, Song XN. Identification of the Perturbed Metabolic Pathways Associating With Renal Fibrosis and Evaluating Metabolome Changes of Pretreatment With Astragalus polysaccharide Through Liquid Chromatography Quadrupole Time-Of-Flight Mass Spectrometry. Front Pharmacol 2020; 10:1623. [PMID: 32063847 PMCID: PMC7000425 DOI: 10.3389/fphar.2019.01623] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis is glomerulosclerosis and renal tubulointerstitial fibrosis caused by the increase of interstitial cells and intercellular substances and the accumulation of extracellular matrix, and is a common pathological manifestation of renal disease progressing to end-stage renal failure. It has proved that Astragalus polysaccharide (AP) has curative effect on renal disease; however, its therapeutic mechanism on renal fibrosis is still unclear. Metabolomics approach provides an opportunity to identify novel molecular biomarkers. The purpose of this study is to study the changes of serum metabolic profile of rats with unilateral tubal ligation and replication of renal fibrosis model and the therapeutic effect of AP on it. The blood samples of rats in the control group, renal fibrosis model group, and AP treatment group collected on the 21st day were analyzed by metabolomics method based on UPLC-Q-TOF-MS. Principal component analysis (PCA) showed that clustering was obvious and significantly separated, and paired partial least squares discriminant analysis (OPLS-DA) was used for further analysis. Combined with the network databases such as HMDB and KEGG and a large number of literatures, 32 potential biomarkers related to renal fibrosis were preliminarily screened out and further verified by MS/MS secondary debris information. After pretreatment with AP, 20 biomarkers were significantly regulated, and correlated with phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, etc. It also revealed the metabolic changes of renal fibrosis and intervention effect of AP. These data uncover a link between metabolism and the molecular mechanism with potential implications in the understanding of the intervention effect of AP. Conclusively, UPLC-Q-TOF-MS-based metabolomics can be valuable and promising strategy to understand the disease mechanism and natural drug pretreatment.
Collapse
Affiliation(s)
- Lei Ren
- Department of Clinical Laboratory, Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Xiao-Ying Guo
- Department of Clinical Laboratory, Daqing Oilfield General Hospital, Daqing, China
| | - Fei Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mei-Li Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiang-Nan Song
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
High-throughput metabolomics reveals the perturbed metabolic pathways and biomarkers of Yang Huang syndrome as potential targets for evaluating the therapeutic effects and mechanism of geniposide. Front Med 2020; 14:651-663. [PMID: 31901116 DOI: 10.1007/s11684-019-0709-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
High-throughput metabolomics can clarify the underlying molecular mechanism of diseases via the qualitative and quantitative analysis of metabolites. This study used the established Yang Huang syndrome (YHS) mouse model to evaluate the efficacy of geniposide (GEN). Urine metabolic data were quantified by ultraperformance liquid chromatography-tandem mass spectrometry. The non-target screening of the massive biological information dataset was performed, and a total of 33 metabolites, including tyramine glucuronide, aurine, and L-cysteine, were identified relating to YHS. These differential metabolites directly participated in the disturbance of phase I reaction and hydrophilic transformation of bilirubin. Interestingly, they were completely reversed by GEN. While, as the auxiliary technical means, we also focused on the molecular prediction and docking results in network pharmacological and integrated analysis part. We used integrated analysis to communicate the multiple results of metabolomics and network pharmacology. This study is the first to report that GEN indirectly regulates the metabolite "tyramine glucuronide" through its direct effect on the target heme oxygenase 1 in vivo. Meanwhile, heme oxygenase-1, a prediction of network pharmacology, was the confirmed metabolic enzyme of phase I reaction in hepatocytes. Our study indicated that the combination of high-throughput metabolomics and network pharmacology is a robust combination for deciphering the pathogenesis of the traditional Chinese medicine (TCM) syndrome.
Collapse
|
10
|
Qiu S, Zhang AH, Guan Y, Sun H, Zhang TL, Han Y, Yan GL, Wang XJ. Functional metabolomics using UPLC-Q/TOF-MS combined with ingenuity pathway analysis as a promising strategy for evaluating the efficacy and discovering amino acid metabolism as a potential therapeutic mechanism-related target for geniposide against alcoholic liver disease. RSC Adv 2020; 10:2677-2690. [PMID: 35496090 PMCID: PMC9048633 DOI: 10.1039/c9ra09305b] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolomics has been used as a strategy to evaluate the efficacy of and potential targets for natural products.
Collapse
Affiliation(s)
- Shi Qiu
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Yu Guan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Tian-lei Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Ying Han
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Xi-jun Wang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| |
Collapse
|
11
|
Zhao Q, Gao X, Yan G, Zhang A, Sun H, Han Y, Li W, Liu L, Wang X. Chinmedomics facilitated quality-marker discovery of Sijunzi decoction to treat spleen qi deficiency syndrome. Front Med 2019; 14:335-356. [DOI: 10.1007/s11684-019-0705-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/25/2019] [Indexed: 01/16/2023]
|
12
|
Dynamic observation and analysis of metabolic response to moxibustion stimulation on ethanol-induced gastric mucosal lesions (GML) rats. Chin Med 2019; 14:44. [PMID: 31636695 PMCID: PMC6794790 DOI: 10.1186/s13020-019-0266-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Gastric mucosal lesion (GML) is the initiating pathological process in many refractory gastric diseases. And moxibustion is an increasingly popular alternative therapy that prevents and treats diseases. However, there are few published reports about developing pathology of GML and therapeutic mechanism of moxibustion treatment on GML. In this study, we investigated pathology of GML and therapeutic mechanism of moxibustion treatment on GML. Methods The male Sprague-Dawley (SD) rats were induced by intragastric administration of 75% ethanol after fasting for 24 h and treated by moxibustion at Zusanli (ST36) and Liangmen (ST21) for 1 day, 4 days or 7 days. Then we applied 1H NMR-based metabolomics to dynamic analysis of metabolic profiles in biological samples (stomach, cerebral cortex and medulla). And the conventional histopathological examinations as well as metabolic pathways assays were also performed. Results Moxibustion intervention showed a beneficial effect on GML by modulating comprehensive metabolic alterations caused by GML, including energy metabolism, membrane metabolism, cellular active and neurotransmitters function. Conclusions Moxibustion can effectively treat gastric mucosal damage and effectively regulate the concentration of some related differential metabolites to maintain the stability of the metabolic pathway.
Collapse
|
13
|
Wang XJ, Ren JL, Zhang AH, Sun H, Yan GL, Han Y, Liu L. Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients: Current evidence. MASS SPECTROMETRY REVIEWS 2019; 38:380-402. [PMID: 30817039 DOI: 10.1002/mas.21589] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Current evidence shows that herbal medicines could be beneficial for the treatment of various diseases. However, the complexities present in chemical compositions of herbal medicines are currently an obstacle for the progression of herbal medicines, which involve unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, non-specific features for drug metabolism, etc. To overcome those issues, metabolomics can be a great to improve and understand herbal medicines from the small-molecule metabolism level. Metabolomics could solve scientific difficulties with herbal medicines from a metabolic perspective, and promote drug discovery and development. In recent years, mass spectrometry-based metabolomics was widely applied for the analysis of herbal constituents in vivo and in vitro. In this review, we highlight the value of mass spectrometry-based metabolomics and metabolism to address the complexity of herbal medicines in systems pharmacology, and to enhance their biomedical value in biomedicine, to shed light on the aid that mass spectrometry-based metabolomics can offer to the investigation of its active ingredients, especially, to link phytochemical analysis with the assessment of pharmacological effect and therapeutic potential. © 2019 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China
| | - Jun-Ling Ren
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
14
|
Zhang YL, Yu PC, Liu P. Using high-throughput metabolomics to discover perturbed metabolic pathways and biomarkers of allergic rhinitis as potential targets to reveal the effects and mechanism of geniposide. RSC Adv 2019; 9:17490-17500. [PMID: 35519866 PMCID: PMC9064603 DOI: 10.1039/c9ra02166c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, we probed the molecular mechanisms of metabolic biomarkers and pathways affected by the bioactive ingredient geniposide (GP), which was shown to protect against experimental allergic rhinitis in mice. The methods used here involved a metabolomics strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-TOF/MS). Using the metabolomics strategy, serum samples of mice in control, model and GP groups were used to explore the differential production of metabolites and pathways related to defense activity of GP towards allergic rhinitis. Allergic symptom, inflammatory factors, and cell populations in the mice spleens were reversed by GP treatment. Seventeen potential biomarkers were discovered in experimental allergic rhinitis mice. GP was shown to have a regulatory effect on 12 of them, which were associated with 8 key metabolic pathways. The ingenuity pathway analysis platform was used to further understand the relationship between metabolic changes and pharmacological activity of GP. The pathways which affected by GP involved cellular growth and proliferation, organismal development, and free radical scavenging. This metabolomics study produced valuable information about potential biomarkers and pathways affected by GP during its effective prevention and therapeutic targeting of allergic rhinitis. In this study, we probed the molecular mechanisms of metabolic biomarkers and pathways affected by the bioactive ingredient geniposide (GP), which was shown to protect against experimental allergic rhinitis in mice.![]()
Collapse
Affiliation(s)
- Yan-Li Zhang
- Experiment Center and School of Pharmacy, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-451-82193484 +86-451-82193484
| | - Peng-Cheng Yu
- College of Traditional Chinese Medicine, Jilin Agricultural University Changchun 130118 China
| | - Peng Liu
- Experiment Center and School of Pharmacy, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-451-82193484 +86-451-82193484
| |
Collapse
|
15
|
Zhang AH, Ma ZM, Sun H, Zhang Y, Liu JH, Wu FF, Wang XJ. High-Throughput Metabolomics Evaluate the Efficacy of Total Lignans From Acanthophanax Senticosus Stem Against Ovariectomized Osteoporosis Rat. Front Pharmacol 2019; 10:553. [PMID: 31191306 PMCID: PMC6548904 DOI: 10.3389/fphar.2019.00553] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common clinical illness in postmenopausal women, but there is no effective drug at present. Metabolomics approach was used to explore the potential biomarkers of PMOP and evaluate the efficacy and therapeutic targets of total lignans in the stem of Acanthophanax senticosus (ASSL) on the ovariectomized osteoporosis model rats. UPLC/MS and pattern recognition methods were used for serum metabolites discovery to illustrate the pathological mechanism of PMOP model rats, and then revealing the intervention effect of ASSL. The pattern recognition result showed that serum metabolic profiles of the sham operation group and the model group were clustered clearly, and 16 potential biomarkers were finally identified (7 in positive ion mode and 9 in negative ion mode), and they are involved in 15 related metabolic pathways. After oral administration of ASSL, 10 biomarkers were found to be significantly up-regulated and mainly regulated metabolic pathways include unsaturated fatty acid biosynthesis, linoleic acid metabolism, and arachidonic acid metabolism, primary bile acid synthesis, tyrosine metabolism, etc. Our study demonstrated that the ASSL could affect the endogenous metabolites related metabolic mechanism, provides a pharmacological basis of the ASSL for PMOP treatment.
Collapse
Affiliation(s)
- Ai-hua Zhang
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhi-ming Ma
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Zhang
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jian-hua Liu
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang-fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Xi-jun Wang
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, Heilongjiang University of Chinese Medicine, Harbin, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| |
Collapse
|
16
|
Li G, Zhang N, Geng F, Liu G, Liu B, Lei X, Li G, Chen X. High-throughput metabolomics and ingenuity pathway approach reveals the pharmacological effect and targets of Ginsenoside Rg1 in Alzheimer's disease mice. Sci Rep 2019; 9:7040. [PMID: 31065079 PMCID: PMC6504884 DOI: 10.1038/s41598-019-43537-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023] Open
Abstract
Ginsenoside Rg1, a natural triterpenoid saponins compound isolated from the Panax species, has been found to possess neuroprotective properties in neurodegenerative diseases such as Alzheimer's disease (AD). However, its pharmacological mechanism on AD has not been studied. In this study, an ultra-performance liquid chromatography combined with quadrupole time of-flight mass spectrometry (UPLC-Q/TOF-MS) based non-targeted metabolomics strategy was performed to explore the mechanism of Ginsenoside Rg1 protecting against AD mice by characterizing metabolic biomarkers and regulation pathways changes. A total of nineteen potential metabolites in serum were discovered and identified to manifest the difference between wild-type mice and triple transgenic mice in control and model group, respectively. Fourteen potential metabolites involved in ten metabolic pathways such as linoleic acid metabolism, arachidonic acid metabolism, tryptophan metabolism and sphingolipid metabolism were affected by Rg1. From the ingenuity pathway analysis (IPA) platform, the relationship between gene, protein, metabolites alteration and protective activity of ginsenoside Rg1 in AD mice are deeply resolved, which refers to increased level of albumin, amino acid metabolism and molecular transport. In addition, quantitative analysis of key enzymes in the disturbed pathways by proteomics parallel reaction was employed to verify changed metabolic pathway under Ginsenoside Rg1. The UPLC-Q/TOF-MS based serum metabolomics method brings about new insights into the pharmacodynamic studies of Ginsenoside Rg1 on AD mice.
Collapse
Affiliation(s)
- Ge Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Xuanwei Avenue 138, Jinghong City, 666100, Yunnan Province, China
| | - Ning Zhang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Guanghua Street 39, Qianjin District, Jiamusi City, 154007, Heilongjiang Province, China
| | - Fang Geng
- College of Chemistry & Chemical Engineering, Harbin Normal University, Shida Road No. 1, Limin Economic Development Zone, Harbin, 150025, Heilongjiang Province, China
| | - Guoliang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Bin Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Guanghua Street 39, Qianjin District, Jiamusi City, 154007, Heilongjiang Province, China
| | - Xia Lei
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Guanghua Street 39, Qianjin District, Jiamusi City, 154007, Heilongjiang Province, China
| | - Guang Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Xuanwei Avenue 138, Jinghong City, 666100, Yunnan Province, China
| | - Xi Chen
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Xuanwei Avenue 138, Jinghong City, 666100, Yunnan Province, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
17
|
Xu HD, Luo W, Lin Y, Zhang J, Zhang L, Zhang W, Huang SM. Discovery of potential therapeutic targets for non-small cell lung cancer using high-throughput metabolomics analysis based on liquid chromatography coupled with tandem mass spectrometry. RSC Adv 2019; 9:10905-10913. [PMID: 35515291 PMCID: PMC9062476 DOI: 10.1039/c9ra00987f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is a severe health problem and threatens a patient's quality of life. The metabolites present in biological systems are expected to be key mediators and the changes in these metabolites play an important role in promoting health. Metabolomics can unravel the global metabolic changes and identify significant biological pathways involved in disease development. However, the role of metabolites in lung cancer is still largely unknown. In the present study, we developed a liquid chromatography coupled with tandem mass spectrometry method for biomarker discovery and identification of non-small cell lung cancer (NSCLC) from metabolomics data sets and aimed to investigate the metabolic profiles of NSCLC samples to identify potential disease biomarkers and to reveal the pathological mechanism. After cell metabolite extraction, the metabolic changes in NSCLC cells were characterized and targeted metabolite analysis was adopted to offer a novel opportunity to probe into the relationship between differentially regulated cell metabolites and NSCLC. Quantitative analysis of key enzymes in the disturbed pathways by proteomics was employed to verify metabolomic pathway changes. A total of 13 specific biomarkers were identified in NSCLC cells related with metabolic disturbance of NSCLC morbidity, which were involved in 4 vital pathways, namely glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis, tyrosine metabolism and sphingolipid metabolism. The proteomics analysis illustrated the obvious fluctuation of the expression of the key enzymes in these pathways, including the downregulation of 3-phosphoglycerate dehydrogenase, phosphoserine phosphatase, tyrosinase and argininosuccinic acid catenase. NSCLC occurrence is mainly related to amino acid and fatty acid metabolic alteration. These findings highlight that the metabolome can provide information on the molecular profiles of cells, which can aid in investigating the metabolite changes to reveal the pathological mechanism.
Collapse
Affiliation(s)
- Hong-Dan Xu
- College of Jiamusi, Heilongjiang University of Chinese Medicine Jiamusi 154007 China
| | - Wen Luo
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Yuanlong Lin
- Infectious Diseases Department, Fourth Affiliated Hospital, Harbin Medical University Harbin China
| | - Jiawen Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Lijuan Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Wei Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Shu-Ming Huang
- Institute of Chinese Medicine, Heilongjiang University of Medicine Chinese Heping Road 24, Xiangfang District Harbin 150040 China +86-451-87266816
| |
Collapse
|
18
|
Guo J, Li X, Wang D, Guo Y, Cao T. Exploring metabolic biomarkers and regulation pathways of acute pancreatitis using ultra-performance liquid chromatography combined with a mass spectrometry-based metabolomics strategy. RSC Adv 2019; 9:12162-12173. [PMID: 35517037 PMCID: PMC9063498 DOI: 10.1039/c9ra02186h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/08/2019] [Indexed: 11/21/2022] Open
Abstract
Acute pancreatitis (AP), as a common kind of pancreas-based inflammatory disease, is accompanied by a serious and abnormal metabolism. However, the specific metabolic process of AP is still unclear. Novel and effective drugs against acute pancreatitis are urgently required. To explore the metabolic biomarkers and regulation pathways of acute pancreatitis, ultra-performance liquid chromatography (UPLC) combined with a mass spectrometry (MS)-based metabolomics strategy was used. Sixteen male adult Sprague-Dawley rats were divided into two groups: a sham operation group (SO) and an AP model group. The AP animal model was induced via the retrograde ductal infusion of 3.5% sodium taurocholate, and rats in the SO group were infused with 0.9% saline. After serum sample collection and sacrifice, a metabolomics strategy based on UPLC-MS was used to detect serum metabolites and metabolic pathways by comparing the SO and AP model groups through full-scan analysis. A total of 19 metabolites were detected in the serum for highlighting the differences between the two groups: l-arabitol, citric acid, isocitric acid, l-phenylalanine, l-tyrosine, dihydroxyacetone, l-valine, succinic acid, 3-hydroxybutyric acid, uric acid, acetylglycine, palmitic amide, homocysteine, d-glutamine, l-arginine, arachidonic acid, N-acetylserotonin, (R)-3-hydroxy-hexadecanoic acid, and d-mannose. Six crucial metabolic pathways, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism and the citrate cycle, were involved; these have potential to become novel targets for the treatment of AP. The ingenuity pathway analysis (IPA) platform is used to gain insights into the metabolic targets in the system, referring to development disorders, cell-to-cell signaling and interactions, cellular assembly and organization, cell compromise, cell growth and proliferation, carbohydrate metabolism and others. It is suggested that UPLC-MS-based metabolomics is capable of accurately depicting the pathological mechanisms of acute pancreatitis, which can drive new drug development. Acute pancreatitis (AP), as a common kind of pancreas-based inflammatory disease, is accompanied by a serious and abnormal metabolism.![]()
Collapse
Affiliation(s)
- Jiajia Guo
- The Second Department of Gastroenterology
- The Third Affiliated Hospital of Qiqihar Medical University
- Hospitalization Building 9/F
- Qiqihar 161000
- People's Republic of China
| | - Xuesong Li
- The Second Department of Gastroenterology
- The Third Affiliated Hospital of Qiqihar Medical University
- Hospitalization Building 9/F
- Qiqihar 161000
- People's Republic of China
| | - Donghong Wang
- The Second Department of Gastroenterology
- The Third Affiliated Hospital of Qiqihar Medical University
- Hospitalization Building 9/F
- Qiqihar 161000
- People's Republic of China
| | - Yuekun Guo
- The Second Department of Gastroenterology
- The Third Affiliated Hospital of Qiqihar Medical University
- Hospitalization Building 9/F
- Qiqihar 161000
- People's Republic of China
| | - Ting Cao
- The Second Department of Gastroenterology
- The Third Affiliated Hospital of Qiqihar Medical University
- Hospitalization Building 9/F
- Qiqihar 161000
- People's Republic of China
| |
Collapse
|
19
|
Sun H, Li XN, Zhang AH, Zhang KM, Yan GL, Han Y, Wu FF, Wang XJ. Exploring potential biomarkers of coronary heart disease treated by Jing Zhi Guan Xin Pian using high-throughput metabolomics. RSC Adv 2019; 9:11420-11432. [PMID: 35520218 PMCID: PMC9063511 DOI: 10.1039/c8ra10557j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/31/2019] [Indexed: 11/21/2022] Open
Abstract
Coronary heart disease (CHD) is a relatively complex disease characterized by narrowing of the arterial lumen and reduction of blood flow to the heart. There is no effective early diagnosis and prevention method. Jing Zhi Guan Xin Pian (JZGXP) is a new preparation prepared from the effective extract of Guanxin II. It is made of five components of traditional Chinese medicine and functions by promoting blood circulation and removing blood stasis and is used for the treatment of CHD and angina pectoris. In our study, a CHD rat model was prepared using a high-fat diet combined with intraperitoneal injection of vitamin D3. Clinical biochemical indexes (TG, CHO and HDL-C), histopathology (coronary and myocardial tissue), electrocardiogram and cardiac indexes were used to evaluate the efficacy of JZGXP in the treatment of CHD model rats. UPLC-HDMS-based metabolomics techniques were used to find metabolic profiles, biomarkers and related metabolic pathways in CHD models and to evaluate the effects of JZGXP on them. At the same time, the targets of JZGXP for the treatment of CHD were analyzed. Our study ultimately identified 25 biomarkers associated with CHD models. Further studies found that these 25 biomarkers involved 9 metabolic pathways in the body and found that JZGXP can recall 21 biomarkers in the urine of model rats and these biomarkers involve nine metabolic pathways. Finally, the targets of JZGXP for the treatment of CHD were β-alanine metabolism and tyrosine metabolism, i.e. amino acids metabolism. This study showed that metabolomics technology is effective for exploring potential biomarkers associated with syndromes or diseases and the therapeutic mechanisms of a traditional Chinese medicine formulation. Coronary heart disease (CHD) is a relatively complex disease characterized by narrowing of the arterial lumen and reduction of blood flow to the heart.![]()
Collapse
Affiliation(s)
- Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Xue-na Li
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Kun-ming Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ying Han
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Fang-fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
| | - Xi-jun Wang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|
20
|
Li TP, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF, Wang XJ. Applications and potential mechanisms of herbal medicines for rheumatoid arthritis treatment: a systematic review. RSC Adv 2019; 9:26381-26392. [PMID: 35685403 PMCID: PMC9127666 DOI: 10.1039/c9ra04737a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
In this review, we systematically discuss the role of traditional Chinese medicine (TCM) in rheumatoid arthritis (RA) disease treatment. TCM classifies the subtypes of RA through its own theoretical method, which is beneficial for more accurate diagnosis and treatment with Chinese herbal medicines (CHMs) that are more suitable for different syndromes. TCM mainly uses a flexible combination of CHMs to play an important role in RA treatment. The main components of these extracts can be subdivided into alkaloids, flavonoids, triterpenes, saponins and other compounds. Using a platform of transgenic and induced arthritis models, we explore the potential mechanisms of TCM against RA with the help of omics analysis techniques and methods. These mechanisms are mainly CHM and its extracts can inhibit RA patients and experimental animal models, including synovitis, vascular proliferation and bone injury; this involves many biological signal exchange targets and pathways. In conclusion, the role of TCM in RA treatment mainly involves reducing the expression and secretion of pro-inflammatory factors, thus decreasing the degree of abnormal immune response. In this review, we systematically discuss the role of traditional Chinese medicine (TCM) in rheumatoid arthritis (RA) disease treatment.![]()
Collapse
Affiliation(s)
- Tai-ping Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
- National Chinmedomics Research Center
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Jian-hua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
| | - Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Fang-fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
- National Chinmedomics Research Center
| | - Xi-jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
- National Chinmedomics Research Center
| |
Collapse
|
21
|
Wang XQ, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF, Wang XJ. Gut microbiota as important modulator of metabolism in health and disease. RSC Adv 2018; 8:42380-42389. [PMID: 35558413 PMCID: PMC9092240 DOI: 10.1039/c8ra08094a] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/02/2018] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract colonizes a large number of microbial microflora, forms a host-microbiota co-metabolism structure with the host to participate in various metabolic processes in the human body, and plays a major role in the host immune response. In addition, the dysbiosis of intestinal microbial homeostasis is closely related to many diseases. Thus, an in-depth understanding of the relationship between them is of importance for disease pathogenesis, prevention and treatment. The combined use of metagenomics, transcriptomics, proteomics and metabolomics techniques for the analysis of gut microbiota can reveal the relationship between microbiota and the host in many ways, which has become a hot topic of analysis in recent years. This review describes the mechanism of co-metabolites in host health, including short-chain fatty acids (SCFA) and bile acid metabolism. The metabolic role of gut microbiota in obesity, liver diseases, gastrointestinal diseases and other diseases is also summarized, and the research methods for multi-omics combined application on gut microbiota are summarized. According to the studies of the interaction mechanism between gut microbiota and the host, we have a better understanding of the use of intestinal microflora in the treatment of related diseases. It is hoped that the gut microbiota can be utilized to maintain human health, providing a reference for future research.
Collapse
Affiliation(s)
- Xiang-Qian Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Jian-Hua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
| | - Xi-Jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| |
Collapse
|