1
|
Driouech M, Cocchi C, Ramzan MS. Air stability of monolayer WSi 2N 4 in dark and bright conditions. Sci Rep 2024; 14:23254. [PMID: 39370464 PMCID: PMC11456585 DOI: 10.1038/s41598-024-73614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Two-dimensional materials with chemical formula MA2Z4 are a promising class of materials for optoelectronic applications. To exploit their potential, their stability with respect to air pollution has to be analyzed under different conditions. In a first-principle study based on density functional theory, we investigate the adsorption of three common environmental gas molecules (O2, H2O, and CO2) on monolayer WSi2N4, an established representative of the MA2Z4 family. The computed adsorption energies, charge transfer, and projected density of states of the polluted monolayer indicate a relatively weak interaction between substrate and molecules resulting in an ultrashort recovery time of the order of nanoseconds. O2 and water introduce localized states in the upper valence region but do not alter the semiconducting nature of WSi2N4 nor its band-gap size apart from a minor variation of a few tens of meV. Exploring the same scenario in the presence of photogenerated electrons and holes, we do not notice any substantial difference except for O2 chemisorption when negative charge carriers are in the system. In this case, monolayer WSi2N4 exhibits signs of irreversible oxidation, testified by an adsorption energy of -5.5 eV leading to an infinitely long recovery time, a rearrangement of the outermost atomic layer bonding with the pollutant, and n-doping of the system. Our results indicate stability of WSi2N4 against H2O and CO2 in both dark and bright conditions, suggesting the potential of this material in nanodevice applications.
Collapse
Affiliation(s)
- Mustapha Driouech
- Institut für Physik, Carl von Ossietzky Universität, 26129, Oldenburg, Germany
| | - Caterina Cocchi
- Institut für Physik, Carl von Ossietzky Universität, 26129, Oldenburg, Germany.
- Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität, 26129, Oldenburg, Germany.
| | | |
Collapse
|
2
|
Norhakim N, Gunasilan T, Kesuma ZR, Hawari HF, Burhanudin ZA. Elucidating the time-dependent charge neutrality point modulation of polymer-coated graphene field-effect transistors in an ambient environment. NANOTECHNOLOGY 2024; 35:505201. [PMID: 39284313 DOI: 10.1088/1361-6528/ad7b42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
The charge neutrality point (CNP) is one of the essential parameters in the development of graphene field-effect transistors (GFETs). For GFET with an intrinsic graphene channel layer, the CNP is typically near-zero-volt gate voltage, implying that a well-balanced density of electrons and holes exists in the graphene channel layer. Fabricated GFET, however, typically exhibits CNP that is either positively or negatively shifted from the near-zero-volt gate voltage, implying that the graphene channel layer is unintentionally doped, leading to a unipolar GFET transfer characteristic. Furthermore, the CNP is also modulated in time, indicating that charges are dynamically induced in the graphene channel layer. In this work, understanding and mitigating the CNP shift were attempted by introducing passivation layers made of polyvinyl alcohol and polydimethylsiloxane onto the graphene channel layer. The CNP was found to be negatively shifted, recovered back to near-zero-volt gate voltage, and then positively shifted in time. By analyzing the charge density, carrier mobility, and correlation between the CNP and the charge density, it can be concluded that positive CNP shifts can be attributed to the charge trapping at the graphene/SiO2interface. The negative CNP shift, on the other hand, is caused by dipole coupling between dipoles in the polymer layer and carriers on the surface of the graphene layer. By gaining a deeper understanding of the intricate mechanisms governing the CNP shifts, an ambiently stable GFET suitable for next-generation electronics could be realized.
Collapse
Affiliation(s)
- Nadia Norhakim
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Thaachayinie Gunasilan
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Zayyan Rafi Kesuma
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Huzein Fahmi Hawari
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Zainal Arif Burhanudin
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| |
Collapse
|
3
|
Byrne DO, Ciston J, Allen FI. Probing Defectivity Beneath the Hydrocarbon Blanket in 2D hBN Using TEM-EELS. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:650-659. [PMID: 39028755 DOI: 10.1093/mam/ozae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/25/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
The controlled creation and manipulation of defects in 2D materials has become increasingly popular as a means to design and tune new material functionalities. However, defect characterization by direct atomic-scale imaging is often severely limited by surface contamination due to a blanket of hydrocarbons. Thus, analysis techniques that can characterize atomic-scale defects despite the contamination layer are advantageous. In this work, we take inspiration from X-ray absorption spectroscopy and use broad-beam electron energy loss spectroscopy (EELS) to characterize defect structures in 2D hexagonal boron nitride (hBN) based on averaged fine structure in the boron K-edge. Since EELS is performed in a transmission electron microscope (TEM), imaging can be performed in-situ to assess contamination levels and other factors such as tears in the fragile 2D sheets, which can affect the spectroscopic analysis. We demonstrate the TEM-EELS technique for 2D hBN samples irradiated with different ion types and doses, finding spectral signatures indicative of boron-oxygen bonding that can be used as a measure of sample defectiveness depending on the ion beam treatment. We propose that even in cases where surface contamination has been mitigated, the averaging-based TEM-EELS technique can be useful for efficient sample surveys to support atomically resolved EELS experiments.
Collapse
Affiliation(s)
- Dana O Byrne
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - Jim Ciston
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Almeida CM, Ptak F, Prioli R. Observation of the early stages of environmental contamination in graphene by friction force. J Chem Phys 2024; 160:214701. [PMID: 38828823 DOI: 10.1063/5.0200875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Exposure to ambient air contaminates the surface of graphene sheets. Contamination may arise from different sources, and its nature alters the frictional behavior of the material. These changes in friction enable the observation of the early stages of contaminants' adsorption in graphene. Using a friction force microscope, we show that molecular adsorption initiates at the edges and mechanical defects in the monolayer. Once the monolayer is covered, the contaminants spread over the additional graphene layers. With this method, we estimate the contamination kinetics. In monolayer graphene, the surface area covered with adsorbed molecules increases with time of air exposure at a rate of 10-14 m2/s, while in bilayer graphene, it is one order of magnitude smaller. Finally, as the contaminants cover the additional graphene layers, friction no longer has a difference concerning the number of graphene layers.
Collapse
Affiliation(s)
- Clara M Almeida
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, Rio de Janeiro 25250-020, Brazil
| | - Felipe Ptak
- Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Marquês de São Vicente 225, Rio de Janeiro 22453-900, Brazil
| | - Rodrigo Prioli
- Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Marquês de São Vicente 225, Rio de Janeiro 22453-900, Brazil
| |
Collapse
|
5
|
Li D, Ji Y, Wei Z, Wang L. Toward a Comprehensive Understanding of the Anomalously Small Contact Angle of Surface Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8721-8729. [PMID: 38598618 DOI: 10.1021/acs.langmuir.4c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Experimental studies have demonstrated that the gas phase contact angle (CA) of a surface nanobubble (SNB) is much smaller than that of a macroscopic gas bubble. This reduced CA plays a crucial role in prolonging the lifetime of SNBs by lowering the bubble pressure and preventing gas molecules from dissolving in the surrounding liquids. Despite extensive efforts to explain the anomalously small CA, a consensus about the underlying reasons is yet to be reached. In this study, we conducted experimental investigations to explore the influence of gas molecules adsorbed at the solid-liquid interface on the CA of SNBs created through the solvent exchange (SE) method and temperature difference (TD). Interestingly, no significant change is observed in the CA of SNBs on highly oriented pyrolytic graphite (HOPG) surfaces. Even for nanobubbles on micro/nano pancakes, the CA only exhibited a slight reduction compared to SNBs on bare HOPG surfaces. These findings suggest that gas adsorption at the immersed solid surface may not be the primary factor contributing to the small CA of the SNBs. Furthermore, the CA of SNBs formed on polystyrene (PS) and octadecyltrichlorosilane (OTS) substrates was also investigated, and a considerable increase in CA was observed. In addition, the effects of other factors including impurity, electric double layer (EDL) line tension, and pinning force upon the CA of SNBs were discussed, and a comprehensive model about multiple factors affecting the CA of SNBs was proposed, which is helpful for understanding the abnormally small CA and the stability of SNBs.
Collapse
Affiliation(s)
- Dayong Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yutong Ji
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Zhenlin Wei
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Lixin Wang
- School of Mechanical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| |
Collapse
|
6
|
Tilmann R, Bartlam C, Hartwig O, Tywoniuk B, Dominik N, Cullen CP, Peters L, Stimpel-Lindner T, McEvoy N, Duesberg GS. Identification of Ubiquitously Present Polymeric Adlayers on 2D Transition Metal Dichalcogenides. ACS NANO 2023. [PMID: 37220885 DOI: 10.1021/acsnano.3c01649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The interest in 2D materials continues to grow across numerous scientific disciplines as compounds with unique electrical, optical, chemical, and thermal characteristics are being discovered. All these properties are governed by an all-surface nature and nanoscale confinement, which can easily be altered by extrinsic influences, such as defects, dopants or strain, adsorbed molecules, and contaminants. Here, we report on the ubiquitous presence of polymeric adlayers on top of layered transition metal dichalcogenides (TMDs). The atomically thin layers, not evident from common analytic methods, such as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), or scanning electron microscopy (SEM), could be identified with highly resolved time-of-flight secondary ion mass spectrometry (TOF-SIMS). The layers consist of hydrocarbons, which preferentially adsorb to the hydrophobic van der Waals surfaces of TMDs, derived from the most common methods. Fingerprint fragmentation patterns enable us to identify certain polymers and link them to those used during preparation and storage of the TMDs. The ubiquitous presence of polymeric films on 2D materials has wide reaching implications for their investigation, processing, and applications. In this regard, we reveal the nature of polymeric residues after commonly used transfer procedures on MoS2 films and investigate several annealing procedures for their removal.
Collapse
Affiliation(s)
- Rita Tilmann
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Cian Bartlam
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Oliver Hartwig
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Bartlomiej Tywoniuk
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Nikolas Dominik
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Conor P Cullen
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Lisanne Peters
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Tanja Stimpel-Lindner
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Niall McEvoy
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Georg S Duesberg
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| |
Collapse
|
7
|
Yang S, Si Z, Li G, Zhan P, Liu C, Lu L, Han B, Xie H, Qin P. Single Cobalt Atoms Immobilized on Palladium-Based Nanosheets as 2D Single-Atom Alloy for Efficient Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207651. [PMID: 36631281 DOI: 10.1002/smll.202207651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Single-atom alloys (SAAs) display excellent electrocatalytic performance by overcoming the scaling relationships in alloys. However, due to the lack of a unique structure engineering design, it is difficult to obtain SAAs with a high specific surface area to expose more active sites. Herein, single Co atoms are immobilized on Pd metallene (Pdm) support to obtain Co/Pdm through the design of the engineered morphology of Pd, realizing the preparation of ultra-thin 2D SAA. The unsaturated coordination environments combined with the unique geometric and electronic structures realize the modulation of the d-band center and the redistribution of charges, generating highly active electronic states on the surface of Co/Pdm. Benefiting from the synergistic interaction and spillover effect, the Co/Pdm electrocatalyst exhibits outstanding hydrogen evolution reaction (HER) performance in both acid and alkaline solutions, especially with a Tafel slope of 8.2 mV dec-1 and a low overpotential of 24.7 mV at 10 mA cm-2 in the acidic medium, which outperforms commercial Pt/C and Pd/C. This work highlights the successful preparation of 2D ultra-thin SAA, which provides a new strategy for the preparation of HER electrocatalyst with high efficiency, activity, and stability.
Collapse
Affiliation(s)
- Shuai Yang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Guozhen Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Peng Zhan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Chang Liu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Lu Lu
- Paris Curie Engineer School, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., LTD, No. 712 Wen'er West Road, Hangzhou, 310003, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
- Paris Curie Engineer School, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| |
Collapse
|
8
|
Guo S, Luo M, Shi G, Tian N, Huang Z, Yang F, Ma L, Wang NZ, Shi Q, Xu K, Xu Z, Watanabe K, Taniguchi T, Chen XH, Shen D, Zhang L, Ruan W, Zhang Y. An ultra-high vacuum system for fabricating clean two-dimensional material devices. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:013903. [PMID: 36725600 DOI: 10.1063/5.0110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
High mobility electron gases confined at material interfaces have been a venue for major discoveries in condensed matter physics. Ultra-high vacuum (UHV) technologies played a key role in creating such high-quality interfaces. The advent of two-dimensional (2D) materials brought new opportunities to explore exotic physics in flat lands. UHV technologies may once again revolutionize research in low dimensions by facilitating the construction of ultra-clean interfaces with a wide variety of 2D materials. Here, we describe the design and operation of a UHV 2D material device fabrication system, in which the entire fabrication process is performed under pressure lower than 5 × 10-10 mbar. Specifically, the UHV system enables the exfoliation of atomically clean 2D materials. Subsequent in situ assembly of van der Waals heterostructures produces high-quality interfaces that are free of contamination. We demonstrate functionalities of this system through exemplary fabrication of various 2D materials and their heterostructures.
Collapse
Affiliation(s)
- Shuaifei Guo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - Mingyan Luo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - Gang Shi
- Department of Physics, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Ning Tian
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - Zhe Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China
| | - Fangyuan Yang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - Liguo Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - Nai Zhou Wang
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qinzhen Shi
- Center for Biomedical Engineering, Fudan University, Shanghai 200438, China
| | - Kailiang Xu
- Center for Biomedical Engineering, Fudan University, Shanghai 200438, China
| | - Zihan Xu
- SixCarbon Technology, Youmagang Industry Park, Shenzhen 518106, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Xian Hui Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dawei Shen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China
| | - Liyuan Zhang
- Department of Physics, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Wei Ruan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - Yuanbo Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation. Nat Commun 2022; 13:5410. [PMID: 36109519 PMCID: PMC9477858 DOI: 10.1038/s41467-022-33135-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022] Open
Abstract
The integration of large-scale two-dimensional (2D) materials onto semiconductor wafers is highly desirable for advanced electronic devices, but challenges such as transfer-related crack, contamination, wrinkle and doping remain. Here, we developed a generic method by gradient surface energy modulation, leading to a reliable adhesion and release of graphene onto target wafers. The as-obtained wafer-scale graphene exhibited a damage-free, clean, and ultra-flat surface with negligible doping, resulting in uniform sheet resistance with only ~6% deviation. The as-transferred graphene on SiO2/Si exhibited high carrier mobility reaching up ~10,000 cm2 V−1 s−1, with quantum Hall effect (QHE) observed at room temperature. Fractional quantum Hall effect (FQHE) appeared at 1.7 K after encapsulation by h-BN, yielding ultra-high mobility of ~280,000 cm2 V−1 s−1. Integrated wafer-scale graphene thermal emitters exhibited significant broadband emission in near-infrared (NIR) spectrum. Overall, the proposed methodology is promising for future integration of wafer-scale 2D materials in advanced electronics and optoelectronics. Defect-free integration of 2D materials onto semiconductor wafers is desired to implement heterogeneous electronic devices. Here, the authors report a method to transfer high-quality graphene on target wafers via gradient surface energy modulation, leading to improved structural and electronic properties.
Collapse
|
10
|
Torres‐Castillo CS, Tavares JR. Covalent functionalization of boron nitride nanotubes through photo‐initiated chemical vapour deposition. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jason R. Tavares
- CREPEC, Chemical Engineering Department, Polytechnique Montreal Quebec Canada
| |
Collapse
|
11
|
Schranghamer TF, Sharma M, Singh R, Das S. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chem Soc Rev 2021; 50:11032-11054. [PMID: 34397050 DOI: 10.1039/d1cs00706h] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two-dimensional (2D) materials offer immense potential for scientific breakthroughs and technological innovations. While early demonstrations of 2D material-based electronics, optoelectronics, flextronics, straintronics, twistronics, and biomimetic devices exploited micromechanically-exfoliated single crystal flakes, recent years have witnessed steady progress in large-area growth techniques such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and metal-organic CVD (MOCVD). However, use of high growth temperatures, chemically-active growth precursors and promoters, and the need for epitaxy often limit direct growth of 2D materials on the substrates of interest for commercial applications. This has led to the development of a large number of methods for the layer transfer of 2D materials from the growth substrate to the target application substrate with varying degrees of cleanliness, uniformity, and transfer-related damage. This review aims to catalog and discuss these layer transfer methods. In particular, the processes, advantages, and drawbacks of various transfer methods are discussed, as is their applicability to different technological platforms of interest for 2D material implementation.
Collapse
Affiliation(s)
- Thomas F Schranghamer
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA.
| | - Madan Sharma
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajendra Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Saptarshi Das
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA. and Department of Materials Science and Engineering, Penn State University, University Park, PA 16802, USA and Materials Research Institute, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Gbadamasi S, Mohiuddin M, Krishnamurthi V, Verma R, Khan MW, Pathak S, Kalantar-Zadeh K, Mahmood N. Interface chemistry of two-dimensional heterostructures - fundamentals to applications. Chem Soc Rev 2021; 50:4684-4729. [PMID: 33621294 DOI: 10.1039/d0cs01070g] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two-dimensional heterostructures (2D HSs) have emerged as a new class of materials where dissimilar 2D materials are combined to synergise their advantages and alleviate shortcomings. Such a combination of dissimilar components into 2D HSs offers fascinating properties and intriguing functionalities attributed to the newly formed heterointerface of constituent components. Understanding the nature of the surface and the complex heterointerface of HSs at the atomic level is crucial for realising the desired properties, designing innovative 2D HSs, and ultimately unlocking their full potential for practical applications. Therefore, this review provides the recent progress in the field of 2D HSs with a focus on the discussion of the fundamentals and the chemistry of heterointerfaces based on van der Waals (vdW) and covalent interactions. It also explains the challenges associated with the scalable synthesis and introduces possible methodologies to produce large quantities with good control over the heterointerface. Subsequently, it highlights the specialised characterisation techniques to reveal the heterointerface formation, chemistry and nature. Afterwards, we give an overview of the role of 2D HSs in various emerging applications, particularly in high-power batteries, bifunctional catalysts, electronics, and sensors. In the end, we present conclusions with the possible solutions to the associated challenges with the heterointerfaces and potential opportunities that can be adopted for innovative applications.
Collapse
|