1
|
Wang B, Wu Z, Han P, Zhu J, Yang H, Lin H, Qiao H, Lan J, Huang X. Casein phosphopeptide/antimicrobial peptide co-modified SrTiO 3 nanotubes for prevention of bacterial infections and repair of bone defects. Biochem Biophys Res Commun 2024; 733:150571. [PMID: 39197197 DOI: 10.1016/j.bbrc.2024.150571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Endowing titanium surfaces with multifunctional properties can reduce implant-related infections and enhance osseointegration. In this study, titanium dioxide nanotubes with strontium doping (STN) were first created on the titanium surface using anodic oxidation and hydrothermal synthesis techniques. Next, casein phosphopeptide (CCP) and an antimicrobial peptide (HHC36) were loaded into the STN with the aid of vacuum physical adsorption (STN-CP-H), giving the titanium surface a dual function of "antimicrobial-osteogenic". The surface of STN-CP-H has a suitable roughness and good hydrophilicity, which is conducive to osteoblasts. STN-CP-H had a 99 % antibacterial rate against S. aureus and E. coli and effectively prevented the growth of bacterial biofilm. Meanwhile, the antibacterial mechanism of STN-CP-H was initially explored with the help of transcriptome sequencing technology. STN-CP-H could greatly increase osteoblast adhesion, proliferation, and expression of osteogenic markers (alkaline phosphatase, runt-related transcription) when CCP and Sr worked together synergistically. In vivo, the STN-CP-H coating could effectively promote new osteogenesis around titanium implant bone and had no toxic effects on heart, liver, spleen, lung and kidney tissues. A potential anti-infection bone healing material, STN-CP-H bifunctional coating developed in this work efficiently inhibited bacterial infection of titanium implants and encouraged early osseointegration.
Collapse
Affiliation(s)
- Bingbing Wang
- College of Lab Medicine, Life Sciences Research Centre, Hebei North University, Zhangjiakou, 075000, China
| | - Zongze Wu
- Shenzhen Kurher Life Technology Co., Shenzhen, 518000, China
| | - Pengde Han
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jialiang Zhu
- College of Lab Medicine, Life Sciences Research Centre, Hebei North University, Zhangjiakou, 075000, China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Haixia Qiao
- College of Lab Medicine, Life Sciences Research Centre, Hebei North University, Zhangjiakou, 075000, China.
| | - Jinping Lan
- College of Lab Medicine, Life Sciences Research Centre, Hebei North University, Zhangjiakou, 075000, China.
| | - Xiao Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
2
|
Kolahreez D, Ghasemi-Mobarakeh L, Quartinello F, Liebner FW, Guebitz GM, Ribitsch D. Multifunctional Casein-Based Wound Dressing Capable of Monitoring and Moderating the Proteolytic Activity of Chronic Wounds. Biomacromolecules 2024; 25:700-714. [PMID: 38295273 PMCID: PMC10865360 DOI: 10.1021/acs.biomac.3c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Every 1.2 s, a diabetic foot ulcer is developed, and every 20 s, one amputation is carried out in diabetic patients. Monitoring and controlling protease activity have been considered as a strategy for more efficient management of diabetic and other chronic wounds. This study aimed to develop a casein-based dressing that, by its disappearance, provides information about the activity of proteases and simultaneously harnesses proteolytic activity. Casein films were fabricated by using an aqueous solution, and heat treatment was successfully deployed as a green and clean approach to confer hydrolytic stability. Our results showed that casein-based films' mechanical characteristics, water absorption, and proteolytic stability could be controlled by the length of the heat treatment, which proved to be a useful tool. An increase in the treatment duration from 30 min to 3 h led to toleration of 2.4 times higher stress, 2 times lower water uptake, and 3.4 times higher proteolytic stability at examined conditions. Selected casein-based structures responded to Bacillus sp. bacteria's protease (BSP) and human neutrophil elastase (HNE) as representatives of bacterial and nonbacterial proteases found in the wounds at 10 and 200 ng mL-1 levels, respectively. The hydrolysis was accompanied by a 36% reduction in proteolytic activity measured by using a casein-based universal protease activity assay. The released casein fragments could scavenge 90% of the examined radicals. In-vitro cell culture studies showed that the hydrolysates were not cytotoxic, and the casein-based film had a favorable interaction with fibroblast cells, indicating its potential as a scaffold in the case that proteolytic activity would not be to the extent that causes its rapid disintegration. In general, these findings hold promise for applying the developed casein-based structure for detecting proteolytic activity without the need for any equipment, kits, or expertise and, more importantly, in a highly economical manner. In the case that the proteolytic activity would not be severe, it could also serve as a substrate for cell adhesion and growth; this would aid in the healing process.
Collapse
Affiliation(s)
- Davood Kolahreez
- Department
of Textile Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
- Institute
of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Laleh Ghasemi-Mobarakeh
- Department
of Textile Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Felice Quartinello
- Institute
of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Falk W. Liebner
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Georg M. Guebitz
- Institute
of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Doris Ribitsch
- Institute
of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| |
Collapse
|
3
|
Jin Z, Lu B, Xu Y. Constructing an electrical microenvironment based on electroactive polymers in the field of bone tissue engineering. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2067537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhengyang Jin
- School of Mechanical Engineering, XinJiang University, Urumchi, China
| | - Bingheng Lu
- School of Mechanical Engineering, XinJiang University, Urumchi, China
- Mirco- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China
- National Innovation Institute of Additive Manufacturing, Xi’an, China
| | - Yan Xu
- School of Mechanical Engineering, XinJiang University, Urumchi, China
| |
Collapse
|
4
|
Díez-Pascual AM. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3251. [PMID: 35591584 PMCID: PMC9104878 DOI: 10.3390/ma15093251] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
Nanomedicine is a speedily growing area of medical research that is focused on developing nanomaterials for the prevention, diagnosis, and treatment of diseases. Nanomaterials with unique physicochemical properties have recently attracted a lot of attention since they offer a lot of potential in biomedical research. Novel generations of engineered nanostructures, also known as designed and functionalized nanomaterials, have opened up new possibilities in the applications of biomedical approaches such as biological imaging, biomolecular sensing, medical devices, drug delivery, and therapy. Polymers, natural biomolecules, or synthetic ligands can interact physically or chemically with nanomaterials to functionalize them for targeted uses. This paper reviews current research in nanotechnology, with a focus on nanomaterial functionalization for medical applications. Firstly, a brief overview of the different types of nanomaterials and the strategies for their surface functionalization is offered. Secondly, different types of functionalized nanomaterials are reviewed. Then, their potential cytotoxicity and cost-effectiveness are discussed. Finally, their use in diverse fields is examined in detail, including cancer treatment, tissue engineering, drug/gene delivery, and medical implants.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
5
|
Wang L, Chen B, Ji M, Guo D, He X, Lashari NUR, Fu C, Zheng J. Development and properties of
UV
‐cured poly (propylene fumarate)/hydroxyapatite composites coatings as potential application for bone adhesive tape. J Appl Polym Sci 2022. [DOI: 10.1002/app.52289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liang Wang
- Xi’an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
- State Key Laboratory for Mechanical Behavior of Materials School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an China
| | - Bing‐yu Chen
- Xi’an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Meng‐hao Ji
- Xi’an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Da‐gang Guo
- State Key Laboratory for Mechanical Behavior of Materials School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an China
| | - Xin‐hai He
- Xi’an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Najeeb ur Rehman Lashari
- Xi’an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Chong Fu
- Xi’an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Jing Zheng
- Shaanxi Key Laboratory of Biomedical Metal Materials Northwest Institute for Non‐ferrous Metal Research Xi'an China
| |
Collapse
|
6
|
Montes A, Valor D, Delgado L, Pereyra C, Martínez de la Ossa E. An Attempt to Optimize Supercritical CO 2 Polyaniline-Polycaprolactone Foaming Processes to Produce Tissue Engineering Scaffolds. Polymers (Basel) 2022; 14:488. [PMID: 35160477 PMCID: PMC8838718 DOI: 10.3390/polym14030488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Conjugated polymers are biomaterials with high conductivity characteristics because of their molecular composition. However, they are too rigid and brittle for medical applications and therefore need to be combined with non-conductive polymers to overcome or lessen these drawbacks. This work has, consequently, focused on the development of three-dimensional scaffolds where conductive and non-conductive polymers have been produced by combining polycaprolactone (PCL) and polyaniline (PANI) by means of supercritical CO2 foaming techniques. To evaluate their therapeutic potential as implants, a series of experiments have been designed to determine the most influential variables in the production of the three-dimensional scaffolds, including temperature, pressure, polymer ratio and depressurization rate. Internal morphology, porosity, expansion factor, PANI loads, biodegradability, mechanical and electrical properties have been taken as the response variables. The results revealed a strong influence from all the input variables studied, as well as from their interactions. The best operating conditions tested were 70 °C, 100 bar, a ratio of 5:1 (PCL:PANI), a depressurization rate of 20 bar/min and a contact time of 1 h.
Collapse
Affiliation(s)
- Antonio Montes
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cadiz, International Excellence Agrifood Campus (CeiA3), Campus Universitario Río San Pedro, 11510 Puerto Real, Cadiz, Spain; (D.V.); (L.D.); (C.P.); (E.M.d.l.O.)
| | | | | | | | | |
Collapse
|
7
|
Li Y, He J, Zhou J, Li Z, Liu L, Hu S, Guo B, Wang W. Conductive photothermal non-swelling nanocomposite hydrogel patch accelerating bone defect repair. Biomater Sci 2022; 10:1326-1341. [DOI: 10.1039/d1bm01937f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone defect repair is one of the most common issue in clinic. Developmental multifunctional scaffolds have become a promising strategy to effectively promote bone defect repair. Here, a series of...
Collapse
|
8
|
Marsudi MA, Ariski RT, Wibowo A, Cooper G, Barlian A, Rachmantyo R, Bartolo PJDS. Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives. Int J Mol Sci 2021; 22:11543. [PMID: 34768972 PMCID: PMC8584045 DOI: 10.3390/ijms222111543] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
The practice of combining external stimulation therapy alongside stimuli-responsive bio-scaffolds has shown massive potential for tissue engineering applications. One promising example is the combination of electrical stimulation (ES) and electroactive scaffolds because ES could enhance cell adhesion and proliferation as well as modulating cellular specialization. Even though electroactive scaffolds have the potential to revolutionize the field of tissue engineering due to their ability to distribute ES directly to the target tissues, the development of effective electroactive scaffolds with specific properties remains a major issue in their practical uses. Conductive polymers (CPs) offer ease of modification that allows for tailoring the scaffold's various properties, making them an attractive option for conductive component in electroactive scaffolds. This review provides an up-to-date narrative of the progress of CPs-based electroactive scaffolds and the challenge of their use in various tissue engineering applications from biomaterials perspectives. The general issues with CP-based scaffolds relevant to its application as electroactive scaffolds were discussed, followed by a more specific discussion in their applications for specific tissues, including bone, nerve, skin, skeletal muscle and cardiac muscle scaffolds. Furthermore, this review also highlighted the importance of the manufacturing process relative to the scaffold's performance, with particular emphasis on additive manufacturing, and various strategies to overcome the CPs' limitations in the development of electroactive scaffolds.
Collapse
Affiliation(s)
- Maradhana Agung Marsudi
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Ridhola Tri Ariski
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Arie Wibowo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Glen Cooper
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (G.C.); (P.J.D.S.B.)
| | - Anggraini Barlian
- School of Life Science & Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia;
| | - Riska Rachmantyo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Paulo J. D. S. Bartolo
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (G.C.); (P.J.D.S.B.)
| |
Collapse
|
9
|
Gómez IJ, Vázquez Sulleiro M, Mantione D, Alegret N. Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art. Polymers (Basel) 2021; 13:745. [PMID: 33673680 PMCID: PMC7957790 DOI: 10.3390/polym13050745] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Carbon nanomaterials are at the forefront of the newest technologies of the third millennium, and together with conductive polymers, represent a vast area of indispensable knowledge for developing the devices of tomorrow. This review focusses on the most recent advances in the field of conductive nanotechnology, which combines the properties of carbon nanomaterials with conjugated polymers. Hybrid materials resulting from the embedding of carbon nanotubes, carbon dots and graphene derivatives are taken into consideration and fully explored, with discussion of the most recent literature. An introduction into the three most widely used conductive polymers and a final section about the most recent biological results obtained using carbon nanotube hybrids will complete this overview of these innovative and beyond belief materials.
Collapse
Affiliation(s)
- I. Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| | | | - Daniele Mantione
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR 5629), Université de Bordeaux, Bordeaux INP, CNRS F, 33607 Pessac, France
| | - Nuria Alegret
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
10
|
Kang MS, Jeong SJ, Lee SH, Kim B, Hong SW, Lee JH, Han DW. Reduced graphene oxide coating enhances osteogenic differentiation of human mesenchymal stem cells on Ti surfaces. Biomater Res 2021; 25:4. [PMID: 33579390 PMCID: PMC7881470 DOI: 10.1186/s40824-021-00205-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Titanium (Ti) has been utilized as hard tissue replacement owing to its superior mechanical and bioinert property, however, lack in tissue compatibility and biofunctionality has limited its clinical use. Reduced graphene oxide (rGO) is one of the graphene derivatives that possess extraordinary biofunctionality and are known to induce osseointegration in vitro and in vivo. In this study, rGO was uniformly coated by meniscus-dragging deposition (MDD) technique to fabricate rGO-Ti substrate for orthopedic and dental implant application. METHODS The physicochemical characteristics of rGO-coated Ti (rGO-Ti) substrates were evaluated by atomic force microscopy, water contact angle, and Raman spectroscopy. Furthermore, human mesenchymal stem cells (hMSCs) were cultured on the rGO-Ti substrate, and then their cellular behaviors such as growth and osteogenic differentiation were determined by a cell counting kit-8 assay, alkaline phosphatase (ALP) activity assay, and alizarin red S staining. RESULTS rGO was coated uniformly on Ti substrates by MDD process, which allowed a decrease in the surface roughness and contact angle of Ti substrates. While rGO-Ti substrates significantly increased cell proliferation after 7 days of incubation, they significantly promoted ALP activity and matrix mineralization, which are early and late differentiation markers, respectively. CONCLUSION It is suggested that rGO-Ti substrates can be effectively utilized as dental and orthopedic bone substitutes since these graphene derivatives have potent effects on stimulating the osteogenic differentiation of hMSCs and showed superior bioactivity and osteogenic potential.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241 South Korea
| | - Seung Jo Jeong
- GS Medical Co., Ltd., Cheongju-si, Chungcheongbuk-do 28161 South Korea
| | - Seok Hyun Lee
- Department of Optics and Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241 South Korea
| | - Bongju Kim
- Dental Life Science Research Institute / Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul, 03080 South Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241 South Korea
- Department of Optics and Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241 South Korea
| | - Jong Ho Lee
- Daan Korea Corporation, Seoul, 06252 South Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241 South Korea
- Department of Optics and Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241 South Korea
| |
Collapse
|
11
|
Bu T, Zheng J, Liu L, Li S, Wu J. Milk proteins and their derived peptides on bone health: Biological functions, mechanisms, and prospects. Compr Rev Food Sci Food Saf 2021; 20:2234-2262. [PMID: 33522110 DOI: 10.1111/1541-4337.12707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone is a dynamic organ under constant metabolism (or remodeling), where a delicate balance between bone resorption and bone formation is maintained. Disruption of this coordinated bone remodeling results in bone diseases, such as osteoporosis, the most common bone disorder characterized by decreased bone mineral density and microarchitectural deterioration. Epidemiological and clinical evidence support that consumption of dairy products is beneficial for bone health; this benefit is often attributed to the presence of calcium, the physiological contributions of milk proteins on bone metabolism, however, are underestimated. Emerging evidence highlighted that not only milk proteins (including individual milk proteins) but also their derived peptides positively regulate bone remodeling and attenuate bone loss, via the regulation of cellular markers and signaling of osteoblasts and osteoclasts. This article aims to review current knowledge about the roles of milk proteins, with an emphasis on individual milk proteins, bioactive peptides derived from milk proteins, and effect of milk processing in particular fermentation, on bone metabolism, to highlight the potential uses of milk proteins in the prevention and treatment of osteoporosis, and, to discuss the knowledge gap and to recommend future research directions.
Collapse
Affiliation(s)
- Tingting Bu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Jiexia Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Shanshan Li
- College of Animal Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Jianping Wu
- ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Sreeja S, Muraleedharan C, Varma PH, Sailaja G. Surface-transformed osteoinductive polyethylene terephthalate scaffold as a dual system for bone tissue regeneration with localized antibiotic delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110491. [DOI: 10.1016/j.msec.2019.110491] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 02/07/2023]
|
13
|
Alegret N, Dominguez-Alfaro A, Mecerreyes D. 3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules 2018; 20:73-89. [PMID: 30543402 DOI: 10.1021/acs.biomac.8b01382] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
3D scaffolds appear to be a cost-effective ultimate answer for biomedical applications, facilitating rapid results while providing an environment similar to in vivo tissue. These biomaterials offer large surface areas for cell or biomaterial attachment, proliferation, biosensing and drug delivery applications. Among 3D scaffolds, the ones based on conjugated polymers (CPs) and natural nonconductive polymers arranged in a 3D architecture provide tridimensionality to cellular culture along with a high surface area for cell adherence and proliferation as well electrical conductivity for stimulation or sensing. However, the scaffolds must also obey other characteristics: homogeneous porosity, with pore sizes large enough to allow cell penetration and nutrient flow; elasticity and wettability similar to the tissue of implantation; and a suitable composition to enhance cell-matrix interactions. In this Review, we summarize the fabrication methods, characterization techniques and main applications of conductive 3D scaffolds based on conductive polymers. The main barrier in the development of these platforms has been the fabrication and subsequent maintenance of the third dimension due to challenges in the manipulation of conductive polymers. In the last decades, different approaches to overcome these barriers have been developed for the production of conductive 3D scaffolds, demonstrating a huge potential for biomedical purposes. Finally, we present an overview of the emerging strategies developed to manufacture 3D conductive scaffolds, the techniques used to fully characterize them, and the biomedical fields where they have been applied.
Collapse
Affiliation(s)
- Nuria Alegret
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Cardiovascular Institute, School of Medicine, Division of Cardiology , University of Colorado Denver Anschutz Medical Campus , 12700 E. 19th Avenue, Building P15 , Aurora , Colorado 80045 , United States
| | - Antonio Dominguez-Alfaro
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Carbon Nanobiotechnology Group, CIC biomaGUNE , Paseo de Miramón 182 , 2014 Donostia-San Sebastián , Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Ikerasque, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
14
|
Parameswaran-Thankam A, Al-Anbaky Q, Al-Karakooly Z, RanguMagar AB, Chhetri BP, Ali N, Ghosh A. Fabrication and characterization of hydroxypropyl guar-poly (vinyl alcohol)-nano hydroxyapatite composite hydrogels for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2083-2105. [PMID: 29962278 DOI: 10.1080/09205063.2018.1494437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biocompatible bone implants composed of natural materials are highly desirable in orthopedic reconstruction procedures. In this study, novel and ecofriendly bionanocomposite hydrogels were synthesized using a blend of hydroxypropyl guar (HPG), poly vinyl alcohol (PVA), and nano-hydroxyapatite (n-HA) under freeze-thaw and mild reaction conditions. The hydrogel materials were characterized using various techniques. TGA studies indicate that both composites, HPG/PVA and HPG/PVA/n-HA, have higher thermal stability compared to HPG alone whereas HPG/PVA/n-HA shows higher stability compared to PVA alone. The HPG/PVA hydrogel shows porous morphology as revealed by the SEM, which is suitable for bone tissue regeneration. Additionally, the hydrogels were found to be transparent and flexible in nature. In vitro biomineralization study performed in simulated body fluid shows HPG/PVA/n-HA has an apatite like structure. The hydrogel materials were employed as extracellular matrices for biocompatibility studies. In vitro cell viability studies using mouse osteoblast MC3T3 cells were performed by MTT, Trypan blue exclusion, and ethidium bromide/acridine orange staining methods. The cell viability studies reveal that composite materials support cell growth and do not show any signs of cytotoxicity compared to pristine PVA. Osteoblastic activity was confirmed by an increased alkaline phosphatase enzyme activity in MC3T3 bone cells grown on composite hydrogel matrices.
Collapse
Affiliation(s)
- Anil Parameswaran-Thankam
- a Department of Chemistry , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Qudes Al-Anbaky
- b Department of Biology , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Zeiyad Al-Karakooly
- b Department of Biology , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Ambar B RanguMagar
- a Department of Chemistry , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Bijay P Chhetri
- a Department of Chemistry , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Nawab Ali
- b Department of Biology , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Anindya Ghosh
- a Department of Chemistry , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| |
Collapse
|
15
|
Cheng X, Wan Q, Pei X. Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. NANOSCALE RESEARCH LETTERS 2018; 13:289. [PMID: 30229504 PMCID: PMC6143492 DOI: 10.1186/s11671-018-2694-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023]
Abstract
We have witnessed abundant breakthroughs in research on the bio-applications of graphene family materials in current years. Owing to their nanoscale size, large specific surface area, photoluminescence properties, and antibacterial activity, graphene family materials possess huge potential for bone tissue engineering, drug/gene delivery, and biological sensing/imaging applications. In this review, we retrospect recent progress and achievements in graphene research, as well as critically analyze and discuss the bio-safety and feasibility of various biomedical applications of graphene family materials for bone tissue regeneration.
Collapse
Affiliation(s)
- Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| |
Collapse
|
16
|
Enhanced cell growth on 3D graphene scaffolds implanted with nitrogen ions. Biointerphases 2018; 13:041001. [PMID: 29768924 DOI: 10.1116/1.5025534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
One of the key challenges in engineering tissues for cell-based therapies is developing biocompatible scaffold materials to direct cell behavior. In this paper, the cytocompatibilities of a flexible three-dimensional graphene scaffold (3D-G) and the same scaffold implanted with nitrogen ions (N+/3D-G) are compared using an in vitro assay based on 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. The N+/3D-G samples were prepared from low-temperature hydrothermally synthesized flexible 3D-G by ion implantation and were found to display improved adhesion and proliferation of rat osteoblast and mouse fibroblast cells. In particular, the N+/3D-G sample with a nitrogen content of ∼10% showed the highest levels of cell viability and proliferation. The flexible N+/3D-G has potential applications as a biocompatible scaffold material that provides improved surface area and hydrophilic groups for cell growth and proliferation.
Collapse
|
17
|
Manavalan S, Rajaji U, Chen SM, Steplin Paul Selvin S, Govindasamy M, Chen TW, Ajmal Ali M, Al-Hemaid FMA, Elshikh MS. Determination of 8-hydroxy-2′-deoxyguanosine oxidative stress biomarker using dysprosium oxide nanoparticles@reduced graphene oxide. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00727f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electrochemical detection of 8-OHdG biomarker using Dy2O3@RGO/SPCE.
Collapse
Affiliation(s)
- Shaktivel Manavalan
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | | | - Mani Govindasamy
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
- Research and Development Center for Smart Textile Technology
| | - M. Ajmal Ali
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh- 11451
- Saudi Arabia
| | - Fahad M. A. Al-Hemaid
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh- 11451
- Saudi Arabia
| | - M. S. Elshikh
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh- 11451
- Saudi Arabia
| |
Collapse
|
18
|
Liu H, Lian B. A guanidyl-functionalized TiO2 nanoparticle-anchored graphene nanohybrid for enhanced capture of phosphopeptides. RSC Adv 2018; 8:29476-29481. [PMID: 35547983 PMCID: PMC9084561 DOI: 10.1039/c8ra05006f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/13/2018] [Accepted: 08/12/2018] [Indexed: 12/31/2022] Open
Abstract
A novel TiO2-based MOAC hybrid nanomaterial was successfully synthesized and applied as a biofunctional adsorbent for selective enrichment of trace phosphopeptides.
Collapse
Affiliation(s)
- Hailong Liu
- College of Life Sciences
- Nanjing Normal University
- Nanjing
- China
- State Key Laboratory of Environmental Geochemistry
| | - Bin Lian
- College of Life Sciences
- Nanjing Normal University
- Nanjing
- China
| |
Collapse
|