1
|
Kim JH, Lee GH, Ma J, Lee S, Su Kim C. Facile nanostructured zinc oxide coating technique for antibacterial and antifouling air filters with low pressure drop. J Colloid Interface Sci 2022; 612:496-503. [PMID: 34999554 DOI: 10.1016/j.jcis.2021.12.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Air filters effectively filtrate external contaminants including pathogenic bioaerosols; however, they also act as culture sites for the pathogenic bacteria captured in nutrient organic pollutants. Although many researchers have applied various antibacterial coatings to filters, the coating application inevitably increased the pressure drop, leading to the low efficiency and high energy consumption of the purification system. Herein, we report a simple nanostructured zinc oxide (ZnO) coating technique to confer a polypropylene nonwoven filter with superior antibacterial, antifouling and anti-biofilm properties without an additional pressure drop. For aerodynamic coating designs, filters were directly immersed into low concentration precursor solutions to enable the sedimentation of the ZnO sol-gel particles on the filter fibers according to fluid dynamic. The precursor concentration affected the surface topology and so properties of the as-fabricated coating. 0.07 M precursor solution produced a rose-like nanostructured coating exhibiting no pressure-drop increase. The large specific surface area and hydrophobic surface killed and then repelled the attached bacteria effectively. As a result, the bare filter promoted the growth and consequent biofilm formation of the surface bacteria in a favorable environment for the growth of microorganisms, while the coated filter successfully suppressed biofilm development.
Collapse
Affiliation(s)
- Ji-Hyeon Kim
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon 51508, South Korea.
| | - Ga-Hyun Lee
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon 51508, South Korea.
| | - Junfei Ma
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon 51508, South Korea.
| | - Seunghun Lee
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon 51508, South Korea.
| | - Chang Su Kim
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon 51508, South Korea.
| |
Collapse
|
2
|
Lapresta-Fernández A, Salinas-Castillo A, Capitán-Vallvey LF. Synthesis of a thermoresponsive crosslinked MEO 2MA polymer coating on microclusters of iron oxide nanoparticles. Sci Rep 2021; 11:3947. [PMID: 33597607 PMCID: PMC7889631 DOI: 10.1038/s41598-021-83608-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/05/2021] [Indexed: 01/10/2023] Open
Abstract
Encapsulation of magnetic nanoparticles (MNPs) of iron (II, III) oxide (Fe3O4) with a thermopolymeric shell of a crosslinked poly(2-(2-methoxyethoxy)ethyl methacrylate) P(MEO2MA) is successfully developed. Magnetic aggregates of large size, around 150-200 nm are obtained during the functionalization of the iron oxide NPs with vinyl groups by using 3-butenoic acid in the presence of a water soluble azo-initiator and a surfactant, at 70 °C. These polymerizable groups provide a covalent attachment of the P(MEO2MA) shell on the surface of the MNPs while a crosslinked network is achieved by including tetraethylene glycol dimethacrylate in the precipitation polymerization synthesis. Temperature control is used to modulate the swelling-to-collapse transition volume until a maximum of around 21:1 ratio between the expanded: shrunk states (from 364 to 144 nm in diameter) between 9 and 49 °C. The hybrid Fe3O4@P(MEO2MA) microgel exhibits a lower critical solution temperature of 21.9 °C below the corresponding value for P(MEO2MA) (bulk, 26 °C). The MEO2MA coating performance in the hybrid microgel is characterized by dynamic light scattering and transmission electron microscopy. The content of preformed MNPs [up to 30.2 (wt%) vs. microgel] was established by thermogravimetric analysis while magnetic properties by vibrating sample magnetometry.
Collapse
Affiliation(s)
- Alejandro Lapresta-Fernández
- ECsens Group, Department of Analytical Chemistry, Campus Fuentenueva, University of Granada, 18071, Granada, Spain.
- Unit of Excellence in Chemistry Applied To Biomedicine and the Environment of the University of Granada, Granada, Spain.
| | - Alfonso Salinas-Castillo
- ECsens Group, Department of Analytical Chemistry, Campus Fuentenueva, University of Granada, 18071, Granada, Spain
- Unit of Excellence in Chemistry Applied To Biomedicine and the Environment of the University of Granada, Granada, Spain
| | - Luis Fermín Capitán-Vallvey
- ECsens Group, Department of Analytical Chemistry, Campus Fuentenueva, University of Granada, 18071, Granada, Spain
- Unit of Excellence in Chemistry Applied To Biomedicine and the Environment of the University of Granada, Granada, Spain
| |
Collapse
|
3
|
Ferjaoui Z, Nahle S, Chang CS, Ghanbaja J, Joubert O, Schneider R, Ferrari L, Gaffet E, Alem H. Layer-by-Layer Self-Assembly of Polyelectrolytes on Superparamagnetic Nanoparticle Surfaces. ACS OMEGA 2020; 5:4770-4777. [PMID: 32201762 PMCID: PMC7081293 DOI: 10.1021/acsomega.9b02963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Designing and manufacturing multifunctional nanoparticles (NPs) are of considerable interest for both academic and industrial research. Among NPs used in this field, iron oxide NPs show low toxicity compared to metallic ones and are thus of high interest for biomedical applications. In this work, superparamagnetic Fe3-δO4-based core/shell NPs were successfully prepared and characterized by the combination of different techniques, and their physical properties were investigated. We demonstrate the efficiency of the layer-by-layer process to graft polyelectrolytes on the surface of iron oxide NPs. The influence of the polyelectrolyte chain configuration on the magnetic properties of the Fe3-δO4/polymer core/shell NPs was enlightened. The simple and fast process described in this work is efficient for the grafting of polyelectrolytes from surfaces, and thus, derived Fe3-δO4 NPs display both the physical properties of the core and of the macromolecular shell. Finally, the cytotoxicity toward the human THP-1 monocytic cell line of the core/shell NPs was assessed. The results showed that the polymer-capped Fe3-δO4 NPs exhibited almost no toxicity after 24 h of exposure at concentrations up to 25 μg mL-1. Our results show that these smart superparamagnetic nanocarriers with stealth properties are promising for applications in multimodal cancer therapy, including drug delivery.
Collapse
Affiliation(s)
- Zied Ferjaoui
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Sara Nahle
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Crosby Soon Chang
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Jaafar Ghanbaja
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Olivier Joubert
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Raphaël Schneider
- Laboratoire
Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Luc Ferrari
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Eric Gaffet
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Halima Alem
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
- Institut
Universitaire de France, 75005 Paris, France
| |
Collapse
|
4
|
Sharma KS, Dubey AK, Koijam AS, Kumar C, Ballal A, Mukherjee S, Phadnis PP, Vatsa RK. Synthesis of 2-deoxy- d-glucose coated Fe 3O 4 nanoparticles for application in targeted delivery of the Pt( iv) prodrug of cisplatin – a novel approach in chemotherapy. NEW J CHEM 2020. [DOI: 10.1039/c9nj05989j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt(IV) prodrug of cisplatin was loaded on 2DG functionalized silica coated Fe3O4 nanoparticles. The formulation alone exhibited biocompatibility whereas Pt(IV) loaded formulation exhibited cytotoxicity comparable with cisplatin.
Collapse
Affiliation(s)
| | - Akhil K. Dubey
- Bio-Organic Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Arunkumar S. Koijam
- Radiopharmaceuticals Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Chandan Kumar
- Radiopharmaceuticals Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Anand Ballal
- Molecular Biology Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Sudip Mukherjee
- UGC-DAE Consortium for Scientific Research
- Mumbai Centre
- Mumbai-400 085
- India
| | - Prasad P. Phadnis
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
- Homi Bhabha National Institute
| | - Rajesh K. Vatsa
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
- Homi Bhabha National Institute
| |
Collapse
|
5
|
Ferjaoui Z, Jamal Al Dine E, Kulmukhamedova A, Bezdetnaya L, Soon Chang C, Schneider R, Mutelet F, Mertz D, Begin-Colin S, Quilès F, Gaffet E, Alem H. Doxorubicin-Loaded Thermoresponsive Superparamagnetic Nanocarriers for Controlled Drug Delivery and Magnetic Hyperthermia Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30610-30620. [PMID: 31359758 DOI: 10.1021/acsami.9b10444] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study reports on the development of thermoresponsive core/shell magnetic nanoparticles (MNPs) based on an iron oxide core and a thermoresponsive copolymer shell composed of 2-(2-methoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene glycol)methacrylate (OEGMA) moieties. These smart nano-objects combine the magnetic properties of the core and the drug carrier properties of the polymeric shell. Loading the anticancer drug doxorubicin (DOX) in the thermoresponsive MNPs via supramolecular interactions provides advanced features to the delivery of DOX with spatial and temporal controls. The so coated iron oxide MNPs exhibit superparamagnetic behavior with a saturation magnetization of around 30 emu g-1. Drug release experiments confirmed that only a small amount of DOX was released at room temperature, while almost 100% drug release was achieved after 52 h at 42 °C with Fe3-δO4@P(MEO2MA60OEGMA40), which grafted polymer chains displaying a low critical solution temperature of 41 °C. Moreover, the MNPs exhibit magnetic hyperthermia properties as shown by specific absorption rate measurements. Finally, the cytotoxicity of the core/shell MNPs toward human ovary cancer SKOV-3 cells was tested. The results showed that the polymer-capped MNPs exhibited almost no toxicity at concentrations up to 12 μg mL-1, whereas when loaded with DOX, an increase in cytotoxicity and a decrease of SKOV-3 cell viability were observed. From these results, we conclude that these smart superparamagnetic nanocarriers with stealth properties are able to deliver drugs to tumor and are promising for applications in multimodal cancer therapy.
Collapse
Affiliation(s)
- Zied Ferjaoui
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| | - Enaam Jamal Al Dine
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| | - Aigul Kulmukhamedova
- Centre de Recherche en Automatique de Nancy (CRAN, UMR 7039) , Université de Lorraine, CNRS , F-54506 Vandœuvre-lès-Nancy , France
- Research Department , Institut de Cancérologie de Lorraine , 6 avenue de Bourgogne, CS 30519 , F-54519 Vandœuvre-lès-Nancy Cedex, France
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy (CRAN, UMR 7039) , Université de Lorraine, CNRS , F-54506 Vandœuvre-lès-Nancy , France
- Research Department , Institut de Cancérologie de Lorraine , 6 avenue de Bourgogne, CS 30519 , F-54519 Vandœuvre-lès-Nancy Cedex, France
| | - Crosby Soon Chang
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| | - Raphaël Schneider
- Laboratoire Réactions et Génie des Procédés, (LRGP, UMR 7274) , Université de Lorraine, CNRS , F-54000 Nancy , France
| | - Fabrice Mutelet
- Laboratoire Réactions et Génie des Procédés, (LRGP, UMR 7274) , Université de Lorraine, CNRS , F-54000 Nancy , France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS, UMR 7504) , Université de Strasbourg, CNRS, UMR 7504 , F-67034 Strasbourg , France
| | - Sylvie Begin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS, UMR 7504) , Université de Strasbourg, CNRS, UMR 7504 , F-67034 Strasbourg , France
| | - Fabienne Quilès
- Laboratoire de Chimie Physique et Microbiologie et Materiaux pour l'Environnement (LCPME, UMR 7564) , Université de Lorraine, CNRS , F-54600 Villers-lès-Nancy , France
| | - Eric Gaffet
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| | - Halima Alem
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| |
Collapse
|
6
|
Chen K, Cao L, Zhang Y, Li K, Qin X, Guo X. Conformation Study of Dual Stimuli-Responsive Core-Shell Diblock Polymer Brushes. Polymers (Basel) 2018; 10:E1084. [PMID: 30961009 PMCID: PMC6403727 DOI: 10.3390/polym10101084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 11/16/2022] Open
Abstract
Stimuli-responsive nanoparticles are among the most popular research topics. In this study, two types of core-shell (polystyrene with a photoiniferter (PSV) as the core and diblock as the shell) polymer brushes (PSV@PNIPA-b-PAA and PSV@PAA-b-PNIPA) were designed and prepared using surface-initiated photoiniferter-mediated polymerization (SI-PIMP). Moreover, their pH- and temperature-stimuli responses were explored by dynamic light scattering (DLS) and turbidimeter under various conditions. The results showed that the conformational change was determined on the basis of the competition among electrostatic repulsion, hydrophobic interaction, hydrogen bonding, and steric hindrance, which was also confirmed by protein adsorption experiments. These results are not only helpful for the design and synthesis of stimuli-responsive polymer brushes but also shed light on controlled protein immobilization under mild conditions.
Collapse
Affiliation(s)
- Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Lan Cao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ying Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kai Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xue Qin
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
7
|
Al Dine EJ, Marchal S, Schneider R, Hamie B, Ghanbaja J, Roques-Carmes T, Hamieh T, Toufaily J, Gaffet E, Alem H. A Facile Approach for Doxorubicine Delivery in Cancer Cells by Responsive and Fluorescent Core/Shell Quantum Dots. Bioconjug Chem 2018; 29:2248-2256. [DOI: 10.1021/acs.bioconjchem.8b00253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Enaam Jamal Al Dine
- Université
de Lorraine, CNRS, IJL, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
- Laboratory of Materials, Catalysis, Environment and Analytical Methods, Faculty of Sciences I, Lebanese University, Campus Rafic Hariri, Beirut, Lebanon
| | - Sophie Marchal
- Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne CS 30519, 54519, Vandoeuvre-lès-Nancy Cedex, France
| | - Raphaël Schneider
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS,
LRGP, F-54000 Nancy, France
| | - Batoul Hamie
- Université
de Lorraine, CNRS, IJL, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
- Laboratory of Materials, Catalysis, Environment and Analytical Methods, Faculty of Sciences I, Lebanese University, Campus Rafic Hariri, Beirut, Lebanon
| | - Jaafar Ghanbaja
- Université
de Lorraine, CNRS, IJL, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Thibault Roques-Carmes
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS,
LRGP, F-54000 Nancy, France
| | - Tayssir Hamieh
- Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne CS 30519, 54519, Vandoeuvre-lès-Nancy Cedex, France
| | - Joumana Toufaily
- Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne CS 30519, 54519, Vandoeuvre-lès-Nancy Cedex, France
| | - Eric Gaffet
- Université
de Lorraine, CNRS, IJL, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Halima Alem
- Université
de Lorraine, CNRS, IJL, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
8
|
Hara S, Aisu J, Kato M, Aono T, Sugawa K, Takase K, Otsuki J, Shimizu S, Ikake H. One-pot synthesis of monodisperse CoFe 2O 4@Ag core-shell nanoparticles and their characterization. NANOSCALE RESEARCH LETTERS 2018; 13:176. [PMID: 29884975 PMCID: PMC5993709 DOI: 10.1186/s11671-018-2544-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
In recent years, monodispersed magnetic nanoparticles with a core/shell structure are expected for their wide applications including magnetic fluid, recoverable catalysts, and biological analysis. However, their synthesis method needs numerous processes such as solvent substitution, exchange of protective agents, and centrifugation. A simple and rapid method for the synthesis of monodispersed core-shell nanoparticles makes it possible to accelerate their further applications. This paper describes a simple and rapid one-pot synthesis of core (CoFe2O4)-shell (Ag) nanoparticles with high monodispersity. The synthesized nanoparticles showed plasmonic light absorption owing to the Ag shell. Moreover, the magnetic property of the nanoparticles had a soft magnetic behavior at room temperature and a hard magnetic behavior at 5 K. In addition, the nanoparticles showed high monodispersity with a low polydispersity index (PDI) value of 0.083 in hexane.
Collapse
Affiliation(s)
- Shuta Hara
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8308 Japan
| | - Jumpei Aisu
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8308 Japan
| | - Masahiro Kato
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8308 Japan
| | - Takashige Aono
- Department of Physics, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8308 Japan
| | - Kosuke Sugawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8308 Japan
| | - Kouichi Takase
- Department of Physics, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8308 Japan
| | - Joe Otsuki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8308 Japan
| | - Shigeru Shimizu
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8308 Japan
| | - Hiroki Ikake
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8308 Japan
| |
Collapse
|
9
|
Orel VE, Tselepi M, Mitrelias T, Rykhalskyi A, Romanov A, Orel VB, Shevchenko A, Burlaka A, Lukin S, Barnes CHW. Nanomagnetic Modulation of Tumor Redox State. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1249-1256. [PMID: 29597047 DOI: 10.1016/j.nano.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/01/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Modulation of reactive oxygen and nitrogen species in a tumor could be exploited for nanotherapeutic benefits. We investigate the antitumor effect in Walker-256 carcinosarcoma of magnetic nanodots composed of doxorubicin-loaded Fe3O4 nanoparticles combined with electromagnetic fields. Treatment using the magnetic nanodot with the largest hysteresis loop area (3402 erg/g) had the greatest antitumor effect with the minimum growth factor 0.49 ± 0.02 day-1 (compared to 0.58 ± 0.02 day-1 for conventional doxorubicin). Electron spin resonance spectra of Walker-256 carcinosarcoma treated with the nanodots, indicate an increase of 2.7 times of free iron (that promotes the formation of highly reactive oxygen species), using the nanodot with the largest hysteresis loop area, compared to conventional doxorubicin treatment as well as increases in ubisemiquinone, lactoferrin, NO-FeS-proteins. Hence, we provide evidence that the designed magnetic nanodots can modulate the tumor redox state. We discuss the implications of these results for cancer nanotherapy.
Collapse
Affiliation(s)
- Valerii E Orel
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine; Biomedical Engineering Department, NTUU "Igor Sikorsky KPI", Kyiv, Ukraine.
| | - Marina Tselepi
- Cavendish Laboratory, University of Cambridge, United Kingdom; Department of Physics, University of Ioannina, Ioannina, Greece.
| | | | - Alexander Rykhalskyi
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine.
| | - Andriy Romanov
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine.
| | - Valerii B Orel
- Bogomolets National Medical University, Medical Faculty 2, Kyiv, Ukraine.
| | | | - Anatoliy Burlaka
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine.
| | - Sergey Lukin
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine.
| | | |
Collapse
|