1
|
Ben-Shahar Y, Stone D, Banin U. Rich Landscape of Colloidal Semiconductor-Metal Hybrid Nanostructures: Synthesis, Synergetic Characteristics, and Emerging Applications. Chem Rev 2023; 123:3790-3851. [PMID: 36735598 PMCID: PMC10103135 DOI: 10.1021/acs.chemrev.2c00770] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nanochemistry provides powerful synthetic tools allowing one to combine different materials on a single nanostructure, thus unfolding numerous possibilities to tailor their properties toward diverse functionalities. Herein, we review the progress in the field of semiconductor-metal hybrid nanoparticles (HNPs) focusing on metal-chalcogenides-metal combined systems. The fundamental principles of their synthesis are discussed, leading to a myriad of possible hybrid architectures including Janus zero-dimensional quantum dot-based systems and anisotropic quasi 1D nanorods and quasi-2D platelets. The properties of HNPs are described with particular focus on emergent synergetic characteristics. Of these, the light-induced charge-separation effect across the semiconductor-metal nanojunction is of particular interest as a basis for the utilization of HNPs in photocatalytic applications. The extensive studies on the charge-separation behavior and its dependence on the HNPs structural characteristics, environmental and chemical conditions, and light excitation regime are surveyed. Combining the advanced synthetic control with the charge-separation effect has led to demonstration of various applications of HNPs in different fields. A particular promise lies in their functionality as photocatalysts for a variety of uses, including solar-to-fuel conversion, as a new type of photoinitiator for photopolymerization and 3D printing, and in novel chemical and biomedical uses.
Collapse
Affiliation(s)
- Yuval Ben-Shahar
- Department of Physical Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona74100, Israel
| | - David Stone
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| | - Uri Banin
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| |
Collapse
|
2
|
Das S, Sharma U, Mukherjee B, Sasikala Devi AA, Velusamy J. Polygonal gold nanocrystal induced efficient phase transition in 2D-MoS 2for enhancing photo-electrocatalytic hydrogen generation. NANOTECHNOLOGY 2023; 34:145202. [PMID: 36548988 DOI: 10.1088/1361-6528/acade6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Plasmonic nanocrystals (NCs) assisted phase transition of two-dimensional molybdenum disulfide (2D-MoS2) unlashes numerous opportunities in the fields of energy harvesting via electrocatalysis and photoelectrocatalysis by enhancing electronic conductivity, increasing catalytic active sites, lowering Gibbs free energy for hydrogen adsorption and desorption, etc. Here, we report the synthesis of faceted gold pentagonal bi-pyramidal (Au-PBP) nanocrystals (NC) for efficient plasmon-induced phase transition (from 2 H to 1 T phase) in chemical vapor deposited 2D-MoS2. The as-developed Au-PBP NC with the increased number of corners and edges showed an enhanced multi-modal plasmonic effect under light irradiations. The overpotential of hydrogen evolution reaction (HER) was reduced by 61 mV, whereas the Tafel slope decreased by 23.7 mV/dec on photoexcitation of the Au-PBP@MoS2hybrid catalyst. The enhanced performance can be attributed to the light-induced 2H to 1 T phase transition of 2D-MoS2, increased active sites, reduced Gibbs free energy, efficient charge separation, change in surface potential, and improved electrical conductivity of 2D-MoS2film. From density functional theory (DFT) calculations, we obtain a significant change in the electronic properties of 2D-MoS2(i.e. work function, surface chemical potential, and the density of states), which was primarily due to the plasmonic interactions and exchange-interactions between the Au-PBP nanocrystals and monolayer 2D-MoS2, thereby enhancing the phase transition and improving the surface properties. This work would lay out finding assorted routes to explore more complex nanocrystals-based multipolar plasmonic NC to escalate the HER activity of 2D-MoS2and other 2D transition metal dichalcogenides.
Collapse
Affiliation(s)
- Santanu Das
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005, India
| | - Uttam Sharma
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005, India
| | - Bratindranath Mukherjee
- Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005, India
| | | | - Jayaramakrishnan Velusamy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom
| |
Collapse
|
3
|
Varma P, Sudheer AE, Aravindh Sasikala Devi A, Murali D, Amaranatha Reddy D. Regulating the charge carrier transport rate via bridging ternary heterojunctions to enable CdS nanorods' solar-driven hydrogen evolution. Dalton Trans 2022; 51:18693-18707. [PMID: 36448739 DOI: 10.1039/d2dt03285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Solar-driven hydrogen generation using single-semiconductor photocatalysts for hydrogen evolution seems to be challenging due to their poor solar to fuel conversion efficiency because of their fast charge carrier recombination. The ternary heterostructure was prepared by an advanced approach to suppress the recombination of photogenerated charge carriers and has contributed a new platform for designing highly efficient photocatalytic systems. Herein, we fabricated a ternary heterojunction with ultrathin WS2-SnS2 nanosheets and CdS nanorods, and the photocatalytic activity was studied. The optimized CdS/SnS2-WS2 (6 wt%) nanostructures were found to be highly stable and exhibited the highest hydrogen evolution rate of 232.45 mmol g-1 h-1, which was almost 93-fold higher than that of the pristine CdS nanorods. Also, Density Functional Theory (DFT) calculations confirmed that the favorable band alignment for charge transport and superior catalytic activity of the newly fabricated ternary nanostructures make them a potential candidate for solar-driven hydrogen production.
Collapse
Affiliation(s)
- Pooja Varma
- Department of Sciences, Indian Institute of Information Technology, Design and Manufacturing, Kurnool-518008, Andhra Pradesh, India.
| | - Anjana E Sudheer
- Department of Sciences, Indian Institute of Information Technology, Design and Manufacturing, Kurnool-518008, Andhra Pradesh, India.
| | | | - D Murali
- Department of Sciences, Indian Institute of Information Technology, Design and Manufacturing, Kurnool-518008, Andhra Pradesh, India.
| | - D Amaranatha Reddy
- Department of Sciences, Indian Institute of Information Technology, Design and Manufacturing, Kurnool-518008, Andhra Pradesh, India.
| |
Collapse
|
4
|
Czelej K, Colmenares JC, Jabłczyńska K, Ćwieka K, Werner Ł, Gradoń L. Sustainable hydrogen production by plasmonic thermophotocatalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Wang X, Long R. Rapid Charge Separation Boosts Solar Hydrogen Generation at the Graphene-MoS 2 Junction: Time-Domain Ab Initio Analysis. J Phys Chem Lett 2021; 12:2763-2769. [PMID: 33705655 DOI: 10.1021/acs.jpclett.1c00322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition metal dichalcogenides and graphene hybrids hold great promise for photovoltaics and photocatalysts. Using a combination of time-domain density functional theory and nonadiabatic molecular dynamics, we investigate the interplay between forward and backward electron transfer (ET), as well as energy relaxation in a van der Waals graphene-MoS2 heterojunction. We demonstrated that built-in potential formed at the polarized interface produces charge separation upon photoexcitation. The electron left on graphene is injected into MoS2 on an ultrafast time scale, which is notably faster than energy losses to heat regardless of the initial state energy. Once the electron is relaxed to the conduction band edge state of MoS2, it transfers back and recombines with the hole remaining on graphene on ultrafast time scales by considering quantum transitions among multiple k points. The obtained time scales for ET, back-ET, and energy relaxation agree well with experimental data. The study reveals that ET that is faster than energy loss makes the graphene-MoS2 heterojunction efficient for optoelectronic applications.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
6
|
Singh J, Soni R. Tunable optical properties of Au nanoparticles encapsulated TiO2 spheres and their improved sunlight mediated photocatalytic activity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Tang L, Liu L, Chen Q, Yang F, Quan X. The construction and performance of photocatalytic-fuel-cell with Fe-MoS2/reduced graphene oxide@carbon fiber cloth and ZnFe2O4/Ag/Ag3VO4@carbon felt as photo electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Maimaitizi H, Abulizi A, Zhang T, Okitsu K, Zhu JJ. Facile photo-ultrasonic assisted synthesis of flower-like Pt/N-MoS 2 microsphere as an efficient sonophotocatalyst for nitrogen fixation. ULTRASONICS SONOCHEMISTRY 2020; 63:104956. [PMID: 31978710 DOI: 10.1016/j.ultsonch.2019.104956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Semiconductor photocatalytic technology is a sustainable and less energy consuming one for nitrogen (N2) reduction to produce ammonia (NH3). In this study, flower-like hierarchical N doped MoS2 (N-MoS2) microsphere was synthesized as a photocatalyst by one-step solvothermal method, which was assembled by numerous interleaving nanosheets petals with thin thickness. Besides, Pt nanoparticles were loaded on the surface of N-MoS2 via photo-ultrasonic reduction method. The as-prepared Pt/N-MoS2 photocatalyst exhibited higher N2 fixation ability than that over pure MoS2 and N-MoS2, which can be attributed to that the N doping narrows the band gap, and the Schottky barrier due to the existence of Pt nanoparticles improves the charge transfer and carrier separation. The reduction of N2 with ultrasonic irradiation was also investigated under visible light irradiation to evaluate the sonophotocatalytic activity of the Pt/N-MoS2 microsphere. The results showed that the N2 reduction rate of sonophotocatalysis (133.8 µmol/g(cat)h) was higher than that of sonocatalysis and photocatalysis, which can be ascribed to the synergistic effect of ultrasound and visible light irradiation. The effects of catalyst dosage, ultrasonic power and ultrasonic pulse on the photocatalytic efficiency were also studied. Meanwhile, a possible mechanism for improved sonophotocatalytic performance was also proposed.
Collapse
Affiliation(s)
- Hujiabudula Maimaitizi
- Key Laboratory of Coal Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, PR China
| | - Abulikemu Abulizi
- Key Laboratory of Coal Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, PR China.
| | - Tao Zhang
- Key Laboratory of Coal Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, PR China
| | - Kenji Okitsu
- Graduate School of Humanities and Sustainable System Sciences, Osaka Prefecture University, Osaka 599-8531, Japan.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
9
|
Chia X, Sutrisnoh NAA, Pumera M. Tunable Pt-MoS x Hybrid Catalysts for Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8702-8711. [PMID: 29505238 DOI: 10.1021/acsami.7b19346] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Platinum (Pt)-based materials are inevitably among the best-performing electrocatalysts for hydrogen evolution reaction (HER). MoS2 was suggested to be a potent HER catalyst to replace Pt in this reaction by theoretical modeling; however, in practice, this dream remains elusive. Here we show a facile one-pot bottom-up synthesis of Pt-MoS x composites using electrochemical reduction in an electrolytic bath of Pt precursor and ammonium tetrathiomolybdate under ambient conditions. By modifying the millimolar concentration of Pt precursors, composites of different surface elemental composition are fabricated; specifically, Pt1.8MoS2, Pt0.1MoS2.5, Pt0.2MoS0.6, and Pt0.3MoS0.8. All electrodeposited Pt-MoS x hybrids showcase low overpotentials and small Tafel slopes that outperform MoS2 as an electrocatalyst. Tantamount to electrodeposited Pt, the rate-limiting process in the HER mechanism is determined to be the Heyrovsky desorption across Pt-MoS x hybrids and starkly swings from the rate-determining Volmer adsorption step in MoS2. The Pt-MoS x composites are equipped with catalytic performance that closely mirrors that of electrodeposited Pt, in particular the HER kinetics for Pt1.8MoS2 and Pt0.1MoS2.5. This work advocates electrosynthesis as a cost-effective method for catalyst design and fabrication of competent composite materials for water splitting applications.
Collapse
Affiliation(s)
- Xinyi Chia
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Nur Ayu Afira Sutrisnoh
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
- Central European Institute of Technology , Brno University of Technology , Purkyňova 123 , CZ-61200 Brno , Czech Republic
| |
Collapse
|
10
|
Chen K, Ding SJ, Luo ZJ, Pan GM, Wang JH, Liu J, Zhou L, Wang QQ. Largely enhanced photocatalytic activity of Au/XS 2/Au (X = Re, Mo) antenna-reactor hybrids: charge and energy transfer. NANOSCALE 2018; 10:4130-4137. [PMID: 29436547 DOI: 10.1039/c7nr09362d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An antenna-reactor hybrid coupling plasmonic antenna with catalytic nanoparticles is a new strategy to optimize photocatalytic activity. Herein, we have rationally proposed a Au/XS2/Au (X = Re, Mo) antenna reactor, which has a large Au core as the antenna and small satellite Au nanoparticles as the reactor separated by an ultrathin two-dimensional transition-metal dichalcogenide XS2 shell (∼2.6 nm). Due to efficient charge transfer across the XS2 shell as well as energy transfer via coupling of the Au antenna and Au reactor, the photocatalytic activity has been largely enhanced: Au/ReS2/Au exhibits a 3.59-fold enhancement, whereas Au/MoS2/Au exhibits a 2.66-fold enhancement as compared to that of the sum of the three individual components. The different enhancement in the Au/ReS2/Au and Au/MoS2/Au antenna-reactor hybrid is related to the competition and cooperation of charge and energy transfer. These results indicate the great potential of the Au/XS2/Au antenna-reactor hybrid for the development of highly efficient plasmonic photocatalysts.
Collapse
Affiliation(s)
- Kai Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yu H, Xu J, Guo H, Li Y, Liu Z, Jin Z. Synergistic effect of rare earth metal Sm oxides and Co1−xS on sheet structure MoS2 for photocatalytic hydrogen evolution. RSC Adv 2017. [DOI: 10.1039/c7ra11849j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The novel composite Sm2O3@Co1−xS/MoS2 has high photocatalytic activity and stability, the electron transfer and the charge separation were obviously improved with the synergistic effects of Sm2O3 and Co1−xS on the surface of MoS2.
Collapse
Affiliation(s)
- Hai Yu
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- PR China
| | - Jing Xu
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- PR China
| | - Hao Guo
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- PR China
| | - Yanru Li
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- PR China
| | - Zeying Liu
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- PR China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- PR China
| |
Collapse
|
12
|
Liu Y, Xie Y, Liu L, Jiao J. Sulfur vacancy induced high performance for photocatalytic H2 production over 1T@2H phase MoS2 nanolayers. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01488k] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mo-precursor has great impact on the morphology, surface chemistry and photocatalytic activity of MoS2 nanostructure.
Collapse
Affiliation(s)
- Yuying Liu
- College of Environment and Chemical Engineering
- Nanchang Hangkong University
- Nanchang 330063
- P. R. China
| | - Yu Xie
- College of Environment and Chemical Engineering
- Nanchang Hangkong University
- Nanchang 330063
- P. R. China
| | - Lianjun Liu
- College of Environment and Chemical Engineering
- Nanchang Hangkong University
- Nanchang 330063
- P. R. China
| | - Julong Jiao
- College of Environment and Chemical Engineering
- Nanchang Hangkong University
- Nanchang 330063
- P. R. China
| |
Collapse
|