1
|
Liu M, Balamurugan J, Liang T, Liu C. Mechanism of electrocatalytic CO 2 reduction reaction by borophene supported bimetallic catalysts. J Colloid Interface Sci 2024; 659:959-973. [PMID: 38219314 DOI: 10.1016/j.jcis.2024.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Bimetal atom catalysts (BACs) hold significant potential for various applications as a result of the synergistic interaction between adjacent metal atoms. This interaction leads to improved catalytic performance, while simultaneously maintaining high atomic efficiency and exceptional selectivity, similar to single atom catalysts (SACs). Bimetallic site catalysts (M2β12) supported by β12-borophene were developed as catalysts for electrocatalytic carbon dioxide reduction reaction (CO2RR). The research on density functional theory (DFT) demonstrates that M2β12 exhibits exceptional stability, conductivity, and catalytic activity. Investigating the most efficient reaction pathway for CO2RR by analyzing the Gibbs free energy (ΔG) during potential determining steps (PDS) and choosing a catalyst with outstanding catalytic performance for CO2RR. The overpotential required for Fe2β12 and Ag2β12 to generate CO is merely 0.05 V. This implies that the conversion of CO2 to CO can be accomplished with minimal additional voltage. The overpotential values for Cu2β12 and Ag2β12 during the formation of HCOOH were merely 0.001 and 0.07 V, respectively. Furthermore, the Rh2β12 catalyst exhibits a relatively low overpotential of 0.51 V for CH3OH and 0.65 V for CH4. The Fe2β12 produces C2H4 through the *CO-*CO pathway, while Ag2β12 generates CH3CH2OH via the *CO-*CHO coupling pathway, with remarkably low overpotentials of 0.84 and 0.60 V, respectively. The study provides valuable insights for the systematic design and screening of electrocatalysts for CO2RR that exhibit exceptional catalytic performance and selectivity.
Collapse
Affiliation(s)
- Meiling Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Jayaraman Balamurugan
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tongxiang Liang
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Chao Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| |
Collapse
|
2
|
Wagh NK, Kim DH, Lee CH, Kim SH, Um HD, Kwon JSI, Shinde SS, Lee SU, Lee JH. Heterointerface promoted trifunctional electrocatalysts for all temperature high-performance rechargeable Zn-air batteries. NANOSCALE HORIZONS 2023. [PMID: 37183764 DOI: 10.1039/d3nh00108c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The rational design of wide-temperature operating Zn-air batteries is crucial for their practical applications. However, the fundamental challenges remain; the limitation of the sluggish oxygen redox kinetics, insufficient active sites, and poor efficiency/cycle lifespan. Here we present heterointerface-promoted sulfur-deficient cobalt-tin-sulfur (CoS1-δ/SnS2-δ) trifunctional electrocatalysts by a facile solvothermal solution-phase approach. The CoS1-δ/SnS2-δ displays superb trifunctional activities, precisely a record-level oxygen bifunctional activity of 0.57 V (E1/2 = 0.90 V and Ej=10 = 1.47 V) and a hydrogen evolution overpotential (41 mV), outperforming those of Pt/C and RuO2. Theoretical calculations reveal the modulation of the electronic structures and d-band centers that endorse fast electron/proton transport for the hetero-interface and avoid the strong adsorption of intermediate species. The alkaline Zn-air batteries with CoS1-δ/SnS2-δ manifest record-high power density of 249 mW cm-2 and long-cycle life for >1000 cycles under harsh operations of 20 mA cm-2, surpassing those of Pt/C + RuO2 and previous state-of-the-art catalysts. Furthermore, the solid-state flexible Zn-air battery also displays remarkable performance with an energy density of 1077 Wh kg-1, >690 cycles for 50 mA cm-2, and a wide operating temperature from +80 to -40 °C with 85% capacity retention, which provides insights for practical Zn-air batteries.
Collapse
Affiliation(s)
- Nayantara K Wagh
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| | - Dong-Hyung Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| | - Chi Ho Lee
- Artie McFerrin Department of Chemical Engineering, Texas A&M Energy Institute, College Station, Texas 77843, USA
| | - Sung-Hae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| | - Han-Don Um
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Joseph Sang-Il Kwon
- Artie McFerrin Department of Chemical Engineering, Texas A&M Energy Institute, College Station, Texas 77843, USA
| | - Sambhaji S Shinde
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| | - Sang Uck Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung-Ho Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
3
|
Wagh NK, Shinde SS, Lee CH, Kim SH, Kim DH, Um HD, Lee SU, Lee JH. Supramolecular Polymer Intertwined Free-Standing Bifunctional Membrane Catalysts for All-Temperature Flexible Zn-Air Batteries. NANO-MICRO LETTERS 2022; 14:190. [PMID: 36114911 PMCID: PMC9482563 DOI: 10.1007/s40820-022-00927-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 05/28/2023]
Abstract
Rational construction of flexible free-standing electrocatalysts featuring long-lasting durability, high efficiency, and wide temperature tolerance under harsh practical operations are fundamentally significant for commercial zinc-air batteries. Here, 3D flexible free-standing bifunctional membrane electrocatalysts composed of covalently cross-linked supramolecular polymer networks with nitrogen-deficient carbon nitride nanotubes are fabricated (referred to as PEMAC@NDCN) by a facile self-templated approach. PEMAC@NDCN demonstrates the lowest reversible oxygen bifunctional activity of 0.61 V with exceptional long-lasting durability, which outperforms those of commercial Pt/C and RuO2. Theoretical calculations and control experiments reveal the boosted electron transfer, electrolyte mass/ion transports, and abundant active surface site preferences. Moreover, the constructed alkaline Zn-air battery with PEMAC@NDCN air-cathode reveals superb power density, capacity, and discharge-charge cycling stability (over 2160 cycles) compared to the reference Pt/C + RuO2. Solid-state Zn-air batteries enable a high power density of 211 mW cm-2, energy density of 1056 Wh kg-1, stable charge-discharge cycling of 2580 cycles for 50 mA cm-2, and wide temperature tolerance from - 40 to 70 °C with retention of 86% capacity compared to room-temperature counterparts, illustrating prospects over harsh operations.
Collapse
Affiliation(s)
- Nayantara K Wagh
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Sambhaji S Shinde
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Chi Ho Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Sung-Hae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Dong-Hyung Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Han-Don Um
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Sang Uck Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea.
| | - Jung-Ho Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
4
|
Emran KM, Alanazi HE. Double layer lanthanide –Pt/TiO 2 nanotube arrays electrode as a cost-highly efficient electrocatalyst for hydrogen evolution in acid media. JOURNAL OF EXPERIMENTAL NANOSCIENCE 2021; 16:81-100. [DOI: 10.1080/17458080.2021.1902507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/12/2020] [Accepted: 03/08/2021] [Indexed: 09/01/2023]
Affiliation(s)
- Khadijah M. Emran
- Department of Chemistry, College of Science, Taibah University, Madinah, KSA
| | - Hessah E. Alanazi
- Department of Chemistry, College of Science and Art, Al Jouf University, Qurayyat, KSA
| |
Collapse
|
5
|
Zhao J, Liu C, Ma J. A light-driven modulation of electric conductance through the adsorption of azobenzene onto silicon-doped- and pyridine-like N 3-vacancy graphene. NANOSCALE 2017; 9:19017-19025. [PMID: 29185573 DOI: 10.1039/c7nr07382h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability to modulate the conductance of an electronic device under light irradiation is crucial to the practical applications of nanoscale electronics. Density functional theory calculations predict that the conductance of the photo-responsive graphene-based nanocomposites can be tuned through the noncovalent adsorption of an azobenzene (AB) derivative onto pristine, Si-doped, and pyridine-like N3-vacancy graphene. AB@graphene systems were found to exhibit a visible-light response within the low-frequency region, rendering the trans-to-cis isomerizations of these nanocomposites under the irradiation of solar light. The excellent solar light absorption performances of these hybrids can then be used to modulate the conductance of both N3-vacancy- and Si-doped-graphene AB hybrids effectively through the reversible change of the effective conjugate length of the AB molecule in the photoisomerization. In addition, the solar thermal energy up to 1.53 eV per AB molecule can be stored in the designed nanocomposites with the doped graphene. These findings provide clues for making multifunctional materials with potential applications as both optically controlled nanoelectronics and solar energy storage devices.
Collapse
Affiliation(s)
- Jun Zhao
- School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing 210023, P. R. China.
| | | | | |
Collapse
|