1
|
Tauchi D, Kanno K, Hasegawa M, Mazaki Y, Tsubaki K, Sugiura KI, Shiga T, Mori S, Nishikawa H. Aggregation-induced enhanced fluorescence emission of chiral Zn(II) complexes coordinated by Schiff-base type binaphthyl ligands. Dalton Trans 2024; 53:8926-8933. [PMID: 38687172 DOI: 10.1039/d4dt00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A pair of novel chiral Zn(II) complexes coordinated by Schiff-base type ligands derived from BINOL (1,1'-bi-2-naphthol), R-/S-Zn, were synthesized. X-ray crystallography revealed the presence of two crystallographically independent complexes; one has a distorted trigonal-bipyramidal structure coordinated by two binaphthyl ligands and one disordered methanol molecule (molecule A), while the other has a distorted tetrahedral structure coordinated by two binaphthyl ligands (molecule B). Numerous CH⋯π and CH⋯O interactions were identified, contributing to the formation of a 3-dimensional rigid network structure. Both R-/S-Zn exhibited fluorescence in both CH2Cl2 solutions and powder samples, with the photoluminescence quantum yields (PLQYs) of powder samples being twice as large as those in solutions, indicating aggregation-induced enhanced emission (AIEE). The AIEE properties were attributed to the restraint of the molecular motion arising from the 3-dimensional intermolecular interactions. CD and CPL spectra were observed for R-/S-Zn in both solutions and powders. The dissymmetry factors, gabs and gCPL values, were within the order of 10-3 to 10-4 magnitudes, comparable to those reported for chiral Zn(II) complexes in previous studies.
Collapse
Affiliation(s)
- Daiki Tauchi
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
| | - Katsuya Kanno
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
| | - Masashi Hasegawa
- Graduate School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Yasuhiro Mazaki
- Graduate School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Ken-Ichi Sugiura
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Takuya Shiga
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Seiji Mori
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
| | - Hiroyuki Nishikawa
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
| |
Collapse
|
2
|
Egidi F, Fusè M, Baiardi A, Bloino J, Li X, Barone V. Computational simulation of vibrationally resolved spectra for spin-forbidden transitions. Chirality 2018; 30:850-865. [PMID: 29727500 DOI: 10.1002/chir.22864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/25/2022]
Abstract
In this computational study, we illustrate a method for computing phosphorescence and circularly polarized phosphorescence spectra of molecular systems, which takes into account vibronic effects including both Franck-Condon and Herzberg-Teller contributions. The singlet and triplet states involved in the phosphorescent emission are described within the harmonic approximation, and the method fully takes mode-mixing effects into account when evaluating Franck-Condon integrals. Spin-orbit couplings, which are responsible for these otherwise forbidden phenomena, are accounted for by means of a relativistic two-component time-dependent density functional theory method. The model is applied to two types of chiral systems: camphorquinone, a rigid organic system that allows for an extensive benchmark, and some members of a class of iridium complexes. The merits and shortcomings of the methods are discussed, and some perspectives for future developments are offered.
Collapse
Affiliation(s)
| | | | | | - Julien Bloino
- Institute of Chemistry of Organometallic Compounds, National Research Council of Italy, Pisa, Italy
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|