1
|
Amjad Z, Terzyk AP, Boncel S. Covalent functionalization of 1D and 2D sp 2-carbon nanoallotropes - twelve years of progress (2011-2023). NANOSCALE 2024. [PMID: 38651798 DOI: 10.1039/d3nr06413a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Carbon nanoallotropes have attracted significant attention in the field of materials science due to their unique combination of physicochemical and biological properties, with numerous applications. One-dimensional (1D) and two-dimensional (2D) sp2-carbon nanoallotropes, such as carbon nanohorns (CNHs), carbon nanotubes (CNTs), and graphene, have emerged as prominent candidates for a variety of technological advancements. To fully exploit their exceptional characteristics, the covalent functionalization of these nanostructures may alleviate the problems with the processing and final performance. This route of the carbon nanoallotrope functionalization is based on a covalent attachment of functional groups or molecules (via linkers of various strengths) to their surfaces, enabling precise control over physical, chemical, biological, and electronic properties. Such an approach opens up new avenues for tailoring the nanoallotrope characteristics, such as solubility/dispersibility, reactivity, and interactions with other materials. Over more than the last decade, significant progress has been made in the covalent functionalization of both 1D and 2D sp2-carbon nanoallotropes, paving the way for diverse applications in the nanoelectronics, energy storage, sensing, and biomedical fields. In this comprehensive review, we provide state-of-the-art advancements and achievements in the covalent functionalization of 1D and 2D sp2-carbon nanoallotropes during the past dozen years. We aim to highlight the key strategies, methodologies, and breakthroughs that have significantly contributed to this field. Eventually, we discuss the implications of those advancements and explore the opportunities for future research and applications.
Collapse
Affiliation(s)
- Zunaira Amjad
- Silesian University of Technology, Faculty of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, NanoCarbon Group, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland.
| | - Artur P Terzyk
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Gagarin Street 7, 87-100 Toruń, Poland
| | - Sławomir Boncel
- Silesian University of Technology, Faculty of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, NanoCarbon Group, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland.
- Silesian University of Technology, Centre for Organic and Nanohybrid Electronics (CONE), Stanisława Konarskiego 22B, 44-100 Gliwice, Poland
| |
Collapse
|
2
|
Silva M, Gomes C, Pinho I, Gonçalves H, Vale AC, Covas JA, Alves NM, Paiva MC. Poly(Lactic Acid)/Graphite Nanoplatelet Nanocomposite Filaments for Ligament Scaffolds. NANOMATERIALS 2021; 11:nano11112796. [PMID: 34835562 PMCID: PMC8625229 DOI: 10.3390/nano11112796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/15/2023]
Abstract
The anterior cruciate ligament (ACL) is one of the most prone to injury in the human body. Due to its insufficient vascularization and low regenerative capacity, surgery is often required when it is ruptured. Most of the current tissue engineering (TE) strategies are based on scaffolds produced with fibers due to the natural ligament's fibrous structure. In the present work, composite filaments based on poly(L-lactic acid) (PLA) reinforced with graphite nanoplatelets (PLA+EG) as received, chemically functionalized (PLA+f-EG), or functionalized and decorated with silver nanoparticles [PLA+((f-EG)+Ag)] were produced by melt mixing, ensuring good filler dispersion. These filaments were produced with diameters of 0.25 mm and 1.75 mm for textile-engineered and 3D-printed ligament scaffolds, respectively. The resulting composite filaments are thermally stable, and the incorporation of graphite increases the stiffness of the composites and decreases the electrical resistivity, as compared to PLA. None of the filaments suffered significant degradation after 27 days. The composite filaments were processed into 3D scaffolds with finely controlled dimensions and porosity by textile-engineered and additive fabrication techniques, demonstrating their potential for ligament TE applications.
Collapse
Affiliation(s)
- Magda Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; (M.S.); (A.C.V.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Carina Gomes
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Isabel Pinho
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Hugo Gonçalves
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Ana C. Vale
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; (M.S.); (A.C.V.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - José A. Covas
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Natália M. Alves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; (M.S.); (A.C.V.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Correspondence: (N.M.A.); (M.C.P.)
| | - Maria C. Paiva
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
- Correspondence: (N.M.A.); (M.C.P.)
| |
Collapse
|
3
|
Zakharova OV, Mastalygina EE, Golokhvast KS, Gusev AA. Graphene Nanoribbons: Prospects of Application in Biomedicine and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2425. [PMID: 34578739 PMCID: PMC8469389 DOI: 10.3390/nano11092425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022]
Abstract
Graphene nanoribbons are a type of graphene characterized by remarkable electrical and mechanical properties. This review considers the prospects for the application of graphene ribbons in biomedicine, taking into account safety aspects. According to the analysis of the recent studies, the topical areas of using graphene nanoribbons include mechanical, chemical, photo- and acoustic sensors, devices for the direct sequencing of biological macromolecules, including DNA, gene and drug delivery vehicles, and tissue engineering. There is evidence of good biocompatibility of graphene nanoribbons with human cell lines, but a number of researchers have revealed toxic effects, including cytotoxicity and genotoxicity. Moreover, the damaging effects of nanoribbons are often higher than those of chemical analogs, for instance, graphene oxide nanoplates. The possible mechanism of toxicity is the ability of graphene nanoribbons to damage the cell membrane mechanically, stimulate reactive oxidative stress (ROS) production, autophagy, and inhibition of proliferation, as well as apoptosis induction, DNA fragmentation, and the formation of chromosomal aberrations. At the same time, the biodegradability of graphene nanoribbons under the environmental factors has been proven. In general, this review allows us to conclude that graphene nanoribbons, as components of high-precision nanodevices and therapeutic agents, have significant potential for biomedical applications; however, additional studies of their safety are needed. Particular emphasis should be placed on the lack of information about the effect of graphene nanoribbons on the organism as a whole obtained from in vivo experiments, as well as about their ecological toxicity, accumulation, migration, and destruction within ecosystems.
Collapse
Affiliation(s)
- Olga V. Zakharova
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 33 Internatsionalnaya St., 392000 Tambov, Russia;
- Engineering Center, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISiS, 4 Leninskiy prospekt, 119049 Moscow, Russia
| | - Elena E. Mastalygina
- Engineering Center, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia;
- Laboratory of Physics-Chemistry of Synthetic and Natural Polymers Composites, Institute of Biochemical Physics Named after N.M. Emanuel RAS (IBCP RAS), Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia
| | - Kirill S. Golokhvast
- Polytechnical Institute, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia;
- Siberian Federal Scientific Center for Agrobiotechnology RAS, Centralnaya 2B, 630501 Krasnoobsk, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| | - Alexander A. Gusev
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 33 Internatsionalnaya St., 392000 Tambov, Russia;
- Engineering Center, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia;
- Research Educational Center Sustainable Development of the Forest Complex, Voronezh State Forestry University Named after G F Morozov, 394087 Voronezh, Russia
| |
Collapse
|
4
|
Luo S, Chen X, He Y, Gu Y, Zhu C, Yang GH, Qu LL. Recent advances in graphene nanoribbons for biosensing and biomedicine. J Mater Chem B 2021; 9:6129-6143. [PMID: 34291262 DOI: 10.1039/d1tb00871d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, a new type of quasi-one-dimensional graphene-based material, graphene nanoribbons (GNRs), has attracted increasing attention. The limited domain width and rich edge configurations of GNRs endow them with unique properties and wide applications in comparison to two-dimensional graphene. This review article mainly focuses on the electrical, chemical and other properties of GNRs, and further introduces the typical preparation methods of GNRs, including top-down and bottom-up strategies. Then, their biosensing and biomedical applications are highlighted in detail, such as biosensors, photothermal therapy, drug delivery, etc. Finally, the challenges and future prospects in the synthesis and application of functionalized GNRs are discussed. It is expected that GNRs will have significant practical use in biomedical applications in the future.
Collapse
Affiliation(s)
- Siyu Luo
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | | | | | | | | | | | | |
Collapse
|
5
|
An Overview of Functionalized Graphene Nanomaterials for Advanced Applications. NANOMATERIALS 2021; 11:nano11071717. [PMID: 34209928 PMCID: PMC8308136 DOI: 10.3390/nano11071717] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Interest in the development of graphene-based materials for advanced applications is growing, because of the unique features of such nanomaterials and, above all, of their outstanding versatility, which enables several functionalization pathways that lead to materials with extremely tunable properties and architectures. This review is focused on the careful examination of relationships between synthetic approaches currently used to derivatize graphene, main properties achieved, and target applications proposed. Use of functionalized graphene nanomaterials in six engineering areas (materials with enhanced mechanical and thermal performance, energy, sensors, biomedical, water treatment, and catalysis) was critically reviewed, pointing out the latest advances and potential challenges associated with the application of such materials, with a major focus on the effect that the physicochemical features imparted by functionalization routes exert on the achievement of ultimate properties capable of satisfying or even improving the current demand in each field. Finally, current limitations in terms of basic scientific knowledge and nanotechnology were highlighted, along with the potential future directions towards the full exploitation of such fascinating nanomaterials.
Collapse
|
6
|
Du Z, Wang C, Zhang R, Wang X, Li X. Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects. Int J Nanomedicine 2020; 15:7523-7551. [PMID: 33116486 PMCID: PMC7547809 DOI: 10.2147/ijn.s271917] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
During continuous innovation in the preparation, characterization and application of various bone repair materials for several decades, nanomaterials have exhibited many unique advantages. As a kind of representative two-dimensional nanomaterials, graphene and its derivatives (GDs) such as graphene oxide and reduced graphene oxide have shown promising potential for the application in bone repair based on their excellent mechanical properties, electrical conductivity, large specific surface area (SSA) and atomic structure stability. Herein, we reviewed the updated application of them in bone repair in order to present, as comprehensively, as possible, their specific advantages, challenges and current solutions. Firstly, how their advantages have been utilized in bone repair materials with improved bone formation ability was discussed. Especially, the effects of further functionalization or modification were emphasized. Then, the signaling pathways involved in GDs-induced osteogenic differentiation of stem cells and immunomodulatory mechanism of GDs-induced bone regeneration were discussed. On the other hand, their applications as contrast agents in the field of bone repair were summarized. In addition, we also reviewed the progress and related principles of the effects of GDs parameters on cytotoxicity and residues. At last, the future research was prospected.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding 072350, Hebei Province, People's Republic of China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Ruihong Zhang
- Department of Research and Teaching, The Fourth Central Hospital of Baoding City, Baoding 072350, Hebei Province, People's Republic of China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, People's Republic of China
| |
Collapse
|
7
|
Johnson AP, Gangadharappa H, Pramod K. Graphene nanoribbons: A promising nanomaterial for biomedical applications. J Control Release 2020; 325:141-162. [DOI: 10.1016/j.jconrel.2020.06.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 01/06/2023]
|
8
|
|
9
|
Joshi K, Mazumder B, Chattopadhyay P, Bora NS, Goyary D, Karmakar S. Graphene Family of Nanomaterials: Reviewing Advanced Applications in Drug delivery and Medicine. Curr Drug Deliv 2019; 16:195-214. [DOI: 10.2174/1567201815666181031162208] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Graphene in nano form has proven to be one of the most remarkable materials. It has a single
atom thick molecular structure and it possesses exceptional physical strength, electrical and electronic
properties. Applications of the Graphene Family of Nanomaterials (GFNs) in different fields of therapy
have emerged, including for targeted drug delivery in cancer, gene delivery, antimicrobial therapy, tissue
engineering and more recently in more diseases including HIV. This review seeks to analyze current
advances of potential applications of graphene and its family of nano-materials for drug delivery and
other major biomedical purposes. Moreover, safety and toxicity are the major roadblocks preventing the
use of GFNs in therapeutics. This review intends to analyze the safety and biocompatibility of GFNs
along with the discussion on the latest techniques developed for toxicity reduction and biocompatibility
enhancement of GFNs. This review seeks to evaluate how GFNs in future will serve as biocompatible
and useful biomaterials in therapeutics.
Collapse
Affiliation(s)
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | | | | | | | | |
Collapse
|