1
|
Chen BX, Brahma S, Chen YQ, Huang PC, Chang CC, Huang JL. Methylboronic acid MIDA ester (ADM) as an effective additive in electrolyte to improve cathode electrolyte interlayer performance of LiNi 0.8Co 0.15Al 0.05O 2 electrode. Sci Rep 2023; 13:10025. [PMID: 37340014 DOI: 10.1038/s41598-023-36341-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
We investigated the effectiveness of using methylboronic acid MIDA ester (ADM) as an additive in an electrolyte to enhance the overall electrochemical and material properties of an LNCAO (LiNi0.8Co0.15Al0.05O2) cathode. The cyclic stability of the cathode material measured at 40 °C (@ 0.2 C) showed an enhanced capacity of 144.28 mAh g-1 (@ 100 cycles), a capacity retention of 80%, and a high coulombic efficiency (99.5%), in contrast to these same properties without the electrolyte additive (37.5 mAh g-1, ~ 20%, and 90.4%), thus confirming the effectiveness of the additive. A Fourier transform infrared spectroscopy (FTIR) analysis distinctly showed that the ADM additive suppressed the EC-Li+ ion coordination (1197 cm-1 and 728 cm-1) in the electrolyte, thereby improving the cyclic performance of the LNCAO cathode. The cathode after 100 charge/discharge cycles revealed that the ADM-containing system exhibited better surface stability of the grains in the LNCAO cathode, whereas distinct cracks were observed in the system without the ADM in the electrolyte. A transmission electron microscopy (TEM) analysis revealed the presence of a thin, uniform and dense cathode electrolyte interface (CEI) film on the surface of LNCAO cathode. An operando synchrotron X-ray diffraction (XRD) test identified the high structural reversibility of the LNCAO cathode with a CEI layer formed by the ADM, which effectively maintained the structural stability of the layered material. The additive effectively inhibited the decomposition of electrolyte compositions, as confirmed by X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Bo-Xun Chen
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Sanjaya Brahma
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Qi Chen
- R & D Center for Li-Ion Battery, National University of Tainan, Tainan, 70005, Taiwan
| | - Po-Chia Huang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 300, Taiwan
| | - Chia-Chin Chang
- R & D Center for Li-Ion Battery, National University of Tainan, Tainan, 70005, Taiwan.
- Department of Greenergy, National University of Tainan, Tainan, 70005, Taiwan.
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Jow-Lay Huang
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan, 701, Taiwan.
- Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
2
|
Khaledi-koureh B, Kafi-Ahmadi L, Khademinia S, Marjani AP. Synthesis, physical and electrochemical properties of Bi-V-O mixed metal oxide nanocomposites for catalytic fabrication of 2-amino-4H-benzochromenes under heat, ultrasonic, and microwave illuminations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Hakimyfard A, Samimifar M, Ostadjoola S, Khademinia S, Kafi‐Ahmadi L. L
x
‐β‐NiMoO
4
(L = None, Al, V, Fe, Co) Nanocomposites: Facile Solid‐State Synthesis, Magnetic, Optical, and Electrochemical Properties. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alireza Hakimyfard
- Department of Physics, Faculty of Science Jundi‐Shapur University of Technology Dezful 64617‐96736 Iran
| | - Mohammad Samimifar
- Department of Chemistry, Faculty of Science Jundi‐Shapur University of Technology Dezful 64617‐96736 Iran
| | - Soroor Ostadjoola
- Department of Physics, Faculty of Science Jundi‐Shapur University of Technology Dezful 64617‐96736 Iran
| | - Shahin Khademinia
- Department of Inorganic Chemistry, Faculty of Chemistry Semnan University Semnan 35131‐ 19111 Iran
| | - Leila Kafi‐Ahmadi
- Department of Inorganic Chemistry, Faculty of Chemistry Urmia University Urmia 57561‐51818 Iran
| |
Collapse
|
4
|
A Study to Explore the Suitability of LiNi 0.8Co 0.15Al 0.05O 2/Silicon@Graphite Cells for High-Power Lithium-Ion Batteries. Int J Mol Sci 2021; 22:ijms221910331. [PMID: 34638671 PMCID: PMC8509030 DOI: 10.3390/ijms221910331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Silicon-graphite (Si@G) anodes are receiving increasing attention because the incorporation of Si enables lithium-ion batteries to reach higher energy density. However, Si suffers from structure rupture due to huge volume changes (ca. 300%). The main challenge for silicon-based anodes is improving their long-term cyclabilities and enabling their charge at fast rates. In this work, we investigate the performance of Si@G composite anode, containing 30 wt.% Si, coupled with a LiNi0.8Co0.15Al0.05O2 (NCA) cathode in a pouch cell configuration. To the best of our knowledge, this is the first report on an NCA/Si@G pouch cell cycled at the 5C rate that delivers specific capacity values of 87 mAh g-1. Several techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and gas chromatography-mass spectrometry (GC-MS) are used to elucidate whether the electrodes and electrolyte suffer irreversible damage when a high C-rate cycling regime is applied, revealing that, in this case, electrode and electrolyte degradation is negligible.
Collapse
|
5
|
Sarawutanukul S, Tomon C, Phattharasupakun N, Duangdangchote S, Duriyasart F, Chiochan P, Sawangphruk M. Optimization of the Electrode Properties for High-Performance Ni-Rich Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30643-30652. [PMID: 34180222 DOI: 10.1021/acsami.1c07019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The microstructure of the electrodes in lithium-ion batteries (LIBs) strongly affects their gravimetric and volumetric energy and power as well as their cycle life. Especially, the effect of the microstructure in the case of next-generation Ni-rich cathode materials has not yet been investigated. A comprehensive understanding of the calendering process is therefore necessary to find an optimal level of the electrode microstructure that can enhance lithium-ion transportation, minimize plastic deformation, and improve conductivity. This work therefore aims to investigate the effect of microstructure and wettability on the electrode kinetics of next-generation Ni-rich LiNi0.88Co0.09Al0.03O2-based 18650 cylindrical cells, which were produced at the semiautomation scale of the pilot plant. Thus, all materials, electrodes, and the battery production are in quality control as the same level of commercial LIBs. With the optimized microstructure and other properties including a finely tuned compaction degree of 17.54%, a thickness of 188 μm, a sheet resistivity of 36.47 mΩ cm-2, a crystallite size of 88.85 nm, a porosity of 26.03%, an electrode Brunauer-Emmett-Teller (BET) surface area of 1.090 m2 g-1, an electrode density of 2.529 g cm-3, and an electrolyte uptake capability of 47.8%, the optimized LiNi0.88Co0.09Al0.03O2 18650 cylindrical cells exhibit excellent high-rate capacity retention, fast Li-ion diffusion, and low internal resistance. The optimized electrode microstructure of next-generation Ni-rich cathode materials could be an effective strategy toward the real application of next-generation Ni-rich LIBs.
Collapse
Affiliation(s)
- Sangchai Sarawutanukul
- Center of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Chanikarn Tomon
- Center of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Nutthaphon Phattharasupakun
- Center of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Salatan Duangdangchote
- Center of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Farkfun Duriyasart
- Center of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Poramane Chiochan
- Center of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Montree Sawangphruk
- Center of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
6
|
Kang J, Takai S, Yabutsuka T, Yao T. Relaxation analysis of NCAs in high-voltage region and effect of cobalt content. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Zhang X, Tong Q, Zhang W, Weng J, Sheng Y. Synthesis and stored performance of LiNi0.8Co0.17Al0.03O2 cathode material prepared by using a flocculation precipitation process. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Silicon/LiNi0·8Co0·15Al0·05O2 lithium-ion pouch cells charging and discharging at −40 °C temperature. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Zhang J, Xu S, Hamad KI, Jasim AM, Xing Y. High retention rate NCA cathode powders from spray drying and flame assisted spray pyrolysis using glycerol as the solvent. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.12.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Vadivel S, Phattharasupakun N, Wutthiprom J, Duangdangchote S, Sawangphruk M. High-Performance Li-Ion Batteries Using Nickel-Rich Lithium Nickel Cobalt Aluminium Oxide-Nanocarbon Core-Shell Cathode: In Operando X-ray Diffraction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30719-30727. [PMID: 31369226 DOI: 10.1021/acsami.9b06553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nickel-rich layered, mixed lithium transition-metal oxides have been pursued as a propitious cathode material for the future-generation lithium-ion batteries due to their high energy density and low cost. Nevertheless, acute side reactions between Ni4+ and carbonate electrolyte lead to poor cycling as well as rate performance, which limits their large-scale applications. Here, core-shell like LiNi0.8Co0.15Al0.05O2 (NCA)-carbon composite synthesized by a solvent-free mechanofusion method is reported to solve this issue. Such a core-shell structure exhibits a splendid rate as well as stable cycling when compared to the physically blended NCA. In operando X-ray diffraction studies show that both materials experience anisotropic structural change, i.e., stacking c-axis undergoes a gradual expansion followed by an abrupt shrinkage; meanwhile, the a-axis contracts during the charging process and vice versa. Interestingly, the core-shell material displays a significantly high reversible capacity of 91% in the formation cycle at 0.1C and a retention of 84% at 0.5C after 250 cycles, whereas pristine NCA retains 71%. The robust mechanical force assisted dry coating obtained by the mechanofusion method shows improved electrochemical performance and demonstrates its practical feasibility.
Collapse
|
11
|
Vertruyen B, Eshraghi N, Piffet C, Bodart J, Mahmoud A, Boschini F. Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries. MATERIALS 2018; 11:ma11071076. [PMID: 29941820 PMCID: PMC6073579 DOI: 10.3390/ma11071076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022]
Abstract
The performance of electrode materials in lithium-ion (Li-ion), sodium-ion (Na-ion) and related batteries depends not only on their chemical composition but also on their microstructure. The choice of a synthesis method is therefore of paramount importance. Amongst the wide variety of synthesis or shaping routes reported for an ever-increasing panel of compositions, spray-drying stands out as a versatile tool offering demonstrated potential for up-scaling to industrial quantities. In this review, we provide an overview of the rapidly increasing literature including both spray-drying of solutions and spray-drying of suspensions. We focus, in particular, on the chemical aspects of the formulation of the solution/suspension to be spray-dried. We also consider the post-processing of the spray-dried precursors and the resulting morphologies of granules. The review references more than 300 publications in tables where entries are listed based on final compound composition, starting materials, sources of carbon etc.
Collapse
Affiliation(s)
- Benedicte Vertruyen
- GREENMAT, CESAM Research Unit, University of Liege, Chemistry Institute B6, Quartier Agora, Allée du 6 août, 13, B-4000 Liege, Belgium.
| | - Nicolas Eshraghi
- GREENMAT, CESAM Research Unit, University of Liege, Chemistry Institute B6, Quartier Agora, Allée du 6 août, 13, B-4000 Liege, Belgium.
| | - Caroline Piffet
- GREENMAT, CESAM Research Unit, University of Liege, Chemistry Institute B6, Quartier Agora, Allée du 6 août, 13, B-4000 Liege, Belgium.
| | - Jerome Bodart
- GREENMAT, CESAM Research Unit, University of Liege, Chemistry Institute B6, Quartier Agora, Allée du 6 août, 13, B-4000 Liege, Belgium.
| | - Abdelfattah Mahmoud
- GREENMAT, CESAM Research Unit, University of Liege, Chemistry Institute B6, Quartier Agora, Allée du 6 août, 13, B-4000 Liege, Belgium.
| | - Frederic Boschini
- GREENMAT, CESAM Research Unit, University of Liege, Chemistry Institute B6, Quartier Agora, Allée du 6 août, 13, B-4000 Liege, Belgium.
| |
Collapse
|
12
|
Improving the Electrochemical Performance of LiNi0.80Co0.15Al0.05O2 in Lithium Ion Batteries by LiAlO2 Surface Modification. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8030378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|