1
|
Chauhan PS, Kumarasamy M, Carcaboso AM, Sosnik A, Danino D. Multifunctional silica-coated mixed polymeric micelles for integrin-targeted therapy of pediatric patient-derived glioblastoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112261. [PMID: 34474820 DOI: 10.1016/j.msec.2021.112261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023]
Abstract
Glioblastoma multiforme (GBM) remains a major cause of mortality because treatments are precluded by to the limited transport and penetration of chemotherapeutics across the blood-brain barrier. Pitavastatin (PTV) is a hydrophobic Food and Drug Administration (FDA)-approved anticholesterolemic agent with reported anti-GBM activity. In the present study, we encapsulate PTV in silica-coated polymeric micelles (SiO2 PMs) surface-modified with the cyclic peptide Arg-Gly-Asp-Phe-Val (cRGDfV) that actively targets the αvβ3 integrin overexpressed in the BBB endothelium and GBM. A central composite design is utilized to optimize the preparation process and improve the drug encapsulation ratio from 131 to 780 μg/mL. The silica shell provides full colloidal stability upon extreme dilution and enables a better control of the release kinetics in vitro with 28% of the cargo released after 12 h. Furthermore, SiO2 PMs show excellent compatibility and are internalized by human BBB endothelial cells, astrocytes and pericytes, as shown by confocal laser scanning fluorescence microscopy and flow cytometry. Finally, the anticancer efficacy is assessed in a pediatric patient-derived glioma cell line expressing high levels of the integrin subunits αv, β3 and β5. This PTV-loaded nanocarrier triggers apoptosis by reducing the mRNA level of anti-apoptotic genes NF-kβ, IL-6, BIRC1 and BIRC5 by 89%, 33%, 81% and 63%, respectively, and the cell viability by >60%. Overall, our results suggest the potential of these hybrid nanocarriers for the targeted therapy of GBM and other tumors overexpressing integrin receptors.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel
| | - Murali Kumarasamy
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Angel M Carcaboso
- Institut de Recerca Sant Joan de Deu, Department of Pediatric Oncology, Hospital Sant Joan de Deu, 08950 Barcelona, Spain.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Dganit Danino
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China.
| |
Collapse
|
2
|
Ghalehkhondabi V, Soleymani M, Fazlali A. Folate-targeted nanomicelles containing silibinin as an active drug delivery system for liver cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102157] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Soleymani M, Velashjerdi M, Asgari M. Preparation of hyaluronic acid-decorated mixed nanomicelles for targeted delivery of hydrophobic drugs to CD44-overexpressing cancer cells. Int J Pharm 2021; 592:120052. [PMID: 33159986 DOI: 10.1016/j.ijpharm.2020.120052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Most of the employed methods for preparation of targeted nanoparticles containing hydrophobic herbal drugs have multiple surface modifications with time-consuming steps. The present research was aimed to develop a facile method for preparation of hyaluronic acid (HA)-decorated mixed nanomicelles loaded with curcumin (as a hydrophobic drug model) to provide an efficient drug delivery system for targeted therapy of breast cancer cells with high expression of CD44 receptor. To this end, curcumin was first encapsulated in the hydrophobic core of Pluronic F127/didecyldimethylammonium bromide (PD) mixed nanomicelles using thin-film hydration method. Then, negatively charged HA was coated on the positively charged surface of PD mixed nanomicelles via electrostatic interactions. The drug loading and entrapment efficiency of the targeted nanomicelles were 2.8% and 95.1%, respectively. The average hydrodynamic size of the prepared nanomicelles before and after coating with HA were 19.8 and 35.8 nm, respectively. Moreover, in vitro cytotoxicity analyses showed that, HA-coated PD (HA-PD) mixed nanomicelles can enhance the cytotoxicity of curcumin against MDA-MB-231 cancer cells compared to non-targeted ones (PD mixed nanomicelles), and free curcumin. The IC50 concentrations of free curcumin, curcumin-loaded PD mixed nanomicelles, and curcumin-loaded HA-PD mixed nanomicelles were 4.11, 3.20, and 2.83 μg/mL, respectively, after 48 h incubation with MDA-MB-231 cancer cells. Our results suggest that, curcumin-loaded HA-PD mixed nanomicelles may be considered as a promising targeted anticancer drug delivery system for breast cancer therapy and/or delivering other hydrophobic drugs to different kinds of cancer cells with CD44-receptor overexpression.
Collapse
Affiliation(s)
- Meysam Soleymani
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 38156-8-8349 Arak, Iran.
| | - Mohammad Velashjerdi
- Department of Material Science and Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
| | - Mahsa Asgari
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 38156-8-8349 Arak, Iran
| |
Collapse
|
4
|
Chan MH, Chan YC, Liu RS, Hsiao M. A selective drug delivery system based on phospholipid-type nanobubbles for lung cancer therapy. Nanomedicine (Lond) 2020; 15:2689-2705. [PMID: 33112189 DOI: 10.2217/nnm-2020-0273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: To develop a micelle-type nanobubble decorated with fluorescein-5-isothiocyanate-conjugated transferrin, with encapsulation of paclitaxel (PTX@FT-NB) for lung cancer treatment. Materials & methods: PTX@FT-NBs were characterized to determine their physicochemical properties, structural stability and cytotoxicity. Lung cancer cell and mouse xenograft tumor models were used to evaluate the therapeutic effectiveness of PTX@FT-NB. Results: The PTX@FT-NBs not only showed selective targeting to lung cancer cells but also inhibited tumor growth significantly via paclitaxel release. Furthermore, paclitaxel-induced microtubule stabilization demonstrated the release of the drug from PTX@FT-NB in the targeted tumor cell both in vitro and in vivo. Conclusion: PTX@FT-NB has the potential as an anticancer nanocarrier against lung cancer cells because of its specific targeting and better drug delivery capacity.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yung-Chieh Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.,Intelligent Minimally-Invasive Device Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Ru-Shi Liu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Tao Y, Wang J, Xu X. Emerging and Innovative Theranostic Approaches for Mesoporous Silica Nanoparticles in Hepatocellular Carcinoma: Current Status and Advances. Front Bioeng Biotechnol 2020; 8:184. [PMID: 32211399 PMCID: PMC7075945 DOI: 10.3389/fbioe.2020.00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal solid cancers globally. To improve diagnosis sensitivities and treatment efficacies, the development of new theranostic nanoplatforms for efficient HCC management is urgently needed. In the past decade, mesoporous silica nanoparticles (MSNs) with tailored structure, large surface area, high agents loading volume, abundant chemistry functionality, acceptable biocompatibility have received more and more attention in HCC theranostic. This review outlines the recent advances in MSNs-based systems for HCC therapy and diagnosis. The multifunctional hybrid nanostructures that have both of therapy and diagnosis abilities are highlighted. And the precision delivery strategies of MSNs in HCC are also discussed. Final, we conclude with our personal perspectives on the future development and challenges of MSNs.
Collapse
Affiliation(s)
- Yaoye Tao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences (CAMS), Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Jianguo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences (CAMS), Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences (CAMS), Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, China
| |
Collapse
|
6
|
Soe ZC, Kwon JB, Thapa RK, Ou W, Nguyen HT, Gautam M, Oh KT, Choi HG, Ku SK, Yong CS, Kim JO. Transferrin-Conjugated Polymeric Nanoparticle for Receptor-Mediated Delivery of Doxorubicin in Doxorubicin-Resistant Breast Cancer Cells. Pharmaceutics 2019; 11:E63. [PMID: 30717256 PMCID: PMC6410246 DOI: 10.3390/pharmaceutics11020063] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, a transferrin (Tf)-conjugated polymeric nanoparticle was developed for the targeted delivery of the chemotherapeutic agent doxorubicin (Dox) in order to overcome multi-drug resistance in cancer treatment. Our objective was to improve Dox delivery for producing significant antitumor efficacy in Dox-resistant (R) breast cancer cell lines with minimum toxicity to healthy cells. The results of our experiments revealed that Dox was successfully loaded inside a transferrin (Tf)-conjugated polymeric nanoparticle composed of poloxamer 407 (F127) and 123 (P123) (Dox/F127&P123-Tf), which produced nanosized particles (~90 nm) with a low polydispersity index (~0.23). The accelerated and controlled release profiles of Dox from the nanoparticles were characterized in acidic and physiological pH and Dox/F127&P123-Tf enhanced Dox cytotoxicity in OVCAR-3, MDA-MB-231, and MDA-MB-231(R) cell lines through induction of cellular apoptosis. Moreover, Dox/F127&P123-Tf inhibited cell migration and altered the cell cycle patterns of different cancer cells. In vivo study in MDA-MB-231(R) tumor-bearing mice demonstrated enhanced delivery of nanoparticles to the tumor site when coated in a targeting moiety. Therefore, Dox/F127&P123-Tf has been tailored, using the principles of nanotherapeutics, to overcome drug-resistant chemotherapy.
Collapse
Affiliation(s)
- Zar Chi Soe
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
- Department of Pharmaceutics, University of Pharmacy (Yangon), Waybargi Road, North Okkalapa township, Yangon 11031, Myanmar.
| | - Jun Bum Kwon
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Wenquan Ou
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Milan Gautam
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong Dongjak-gu, Seoul 156-756, Korea.
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Korea.
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| |
Collapse
|