1
|
Raman and near-infrared spectroscopy for in-line sensors. ANAL SCI 2022; 38:1455-1456. [DOI: 10.1007/s44211-022-00202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Haser A, Kittikunakorn N, Dippold E, DiNunzio JC, Blincoe W. Continuous Twin-Screw wet granulation process with In-Barrel drying and NIR setup for Real-Time Moisture Monitoring. Int J Pharm 2022; 630:122377. [PMID: 36368607 DOI: 10.1016/j.ijpharm.2022.122377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to evaluate if wet granule formation and drying could take place in a single operation by utilizing in-barrel drying. The drying kinetics of the formulation were studied in order to select appropriate processing parameters and assess feasibility with short residence times in the extruder. The 18-mm extruder was operated in a 40:1 L:D ratio with 8 zones. The first two zones were used for material feeding and wet granule formation and the remaining zones were used for drying at elevated temperature. The impact of screw configuration as well as screw speed, feed rate, and residence time were all studied to optimize the drying process. Due to limitations of temperature and residence time, vacuum was added to enable sufficient drying. In-line NIR spectroscopy was incorporated into the twin-screw wet granulation (TSWG) process to monitor the moisture content of wet granules in real-time. The set-up was optimized and a predictive model was developed for future experiments. This study demonstrated the success of this technique on a pilot-scale (18-mm) extruder for the first time. Granules were formed and dried to a target loss on drying (LOD) of less than 2 % at moderate temperatures (100 °C - 110 °C) with one single operation. Streamlining wet granulation and drying into one unit operation can have a profound impact on pharmaceutical manufacturing reducing time, footprint, and environmental exposure due to reduced product transfers.
Collapse
Affiliation(s)
- Abbe Haser
- Oral Formulation Sciences and Technology, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA.
| | - Nada Kittikunakorn
- Oral Formulation Sciences and Technology, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Erin Dippold
- Process Commercialization Technology, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - James C DiNunzio
- Oral Formulation Sciences and Technology, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - William Blincoe
- Process Analytical Technology, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| |
Collapse
|
3
|
Ramm S, Fulek R, Eberle VA, Kiera C, Odefey U, Pein-Hackelbusch M. Compression Density as an Alternative to Identify an Optimal Moisture Content for High Shear Wet Granulation as an Initial Step for Spheronisation. Pharmaceutics 2022; 14:2303. [PMID: 36365122 PMCID: PMC9693446 DOI: 10.3390/pharmaceutics14112303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
Pellet production is a multi-step manufacturing process comprising granulation, extrusion and spheronisation. The first step represents a critical control point, since the quality of the granule mass highly influences subsequent process steps and, consequently, the quality of final pellets. The most important parameter of wet granulation is the liquid requirement, which can often only be quantitatively evaluated after further process steps. To identify an alternative for optimal liquid requirements, experiments were conducted with a formulation based on lactose and microcrystalline cellulose. Granules were analyzed with a Powder Vertical Shear Rig. We identified the compression density (ρpress) as the said alternative, linking information from the powder material and the moisture content (R2 = 0.995). We used ρpress to successfully predict liquid requirements for unknown formulation compositions. By means of this prediction, pellets with high quality, regarding shape and size distribution, were produced by carrying out a multi-step manufacturing process. Furthermore, the applicability of ρpress as an alternative quality parameter to other placebo formulations and to formulations containing active pharmaceutical ingredients (APIs) was demonstrated.
Collapse
Affiliation(s)
- Selina Ramm
- Department of Life Science Technologies, OWL University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| | - Ruwen Fulek
- Department of Life Science Technologies, OWL University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| | | | - Christian Kiera
- PHARBIL Pharma GmbH, Reichenbergerstr. 43, 33605 Bielefeld, Germany
| | - Ulrich Odefey
- Department of Life Science Technologies, OWL University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| | - Miriam Pein-Hackelbusch
- Department of Life Science Technologies, OWL University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| |
Collapse
|
4
|
Otsuka M. [Advances in Pharmaceutical Manufacturing Process Management -From Physical Pharmaceutics to Automatic Pharmaceutical Production]. YAKUGAKU ZASSHI 2021; 141:1343-1357. [PMID: 34853207 DOI: 10.1248/yakushi.21-00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since entering graduate school 43 years ago, I have been studying physical pharmaceutics with a focus on the effects of environmental factors on pharmaceutical properties of solid oral dosage forms during the manufacturing process. I have reported on changes in the characteristics of pharmaceutical products during manufacturing processes, such as grinding, mixing, granulation, and tableting owing to complicated phenomena based on chemical reactions or the crystalline polymorphic transitions of bulk drugs and excipients. To develop modern pharmaceutical manufacturing processes based on process analysis technology (PAT) as a next generation good manufacturing practice, real-time monitoring was introduced in these processes using a non-destructive analytical method, such as the near-infrared spectroscopy combined with chemometrics. Many case studies related to the mixing, granulation, tableting, and coating processes involving PAT have been reported. In those studies, I focused on clarifying the physical and chemical mechanism through "design space" representation. Additionally, non-destructive analytical methods, including X-ray computed tomography, audible acoustic emission, Raman spectroscopy, terahertz spectroscopy, and infrared thermal imaging analysis were applied as novel candidate analytical methods to the pharmaceutical process to monitor critical quality attributes. To achieve this purpose in various pharmaceutical dosage forms, I have been attempting the assembly of a modern manufacturing process managed through a "design space" paradigm involving in-line monitoring using novel analytical methods, multivariate analyses, and feed-back systems.
Collapse
|
5
|
Development of a Robust Control Strategy for Fixed-Dose Combination Bilayer Tablets with Integrated Quality by Design, Statistical, and Process Analytical Technology Approach. Pharmaceutics 2021; 13:pharmaceutics13091443. [PMID: 34575519 PMCID: PMC8467219 DOI: 10.3390/pharmaceutics13091443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Control strategy and quality by design (QbD) are widely used to develop pharmaceutical products and improve drug quality; however, studies on fixed-dose combination (FDC) bilayer tablets are limited. In this study, the bilayer tablet consisted of high-dose metformin HCl in a sustained-release layer and low-dose dapagliflozin l-proline in an immediate-release layer. The formulation and process of each layer were optimized using the QbD approach. A d-optimal mixture design and response surface design were applied to optimize critical material attributes and critical process parameters, respectively. The robust design space was developed using Monte Carlo simulations by evaluating the risk of uncertainty in the model predictions. Multivariate analysis showed that there were significant correlations among impeller speed, massing time, granule bulk density, and dissolution in the metformin HCl layer, and among roller pressure, ribbon density, and dissolution in the dapagliflozin l-proline layer. Process analytical technology (PAT) was used with in–line transmittance near-infrared spectroscopy to confirm the bulk and ribbon densities of the optimized bilayer tablet. Moreover, the in vitro drug release and in vivo pharmacokinetic studies showed that the optimized test drug was bioequivalent to the reference drug. This study suggested that integrated QbD, statistical, and PAT approaches can develop a robust control strategy for FDC bilayer tablets by implementing real-time release testing based on the relationships among various variables.
Collapse
|
6
|
Kim EJ, Kim JH, Kim MS, Jeong SH, Choi DH. Process Analytical Technology Tools for Monitoring Pharmaceutical Unit Operations: A Control Strategy for Continuous Process Verification. Pharmaceutics 2021; 13:919. [PMID: 34205797 PMCID: PMC8234957 DOI: 10.3390/pharmaceutics13060919] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Various frameworks and methods, such as quality by design (QbD), real time release test (RTRT), and continuous process verification (CPV), have been introduced to improve drug product quality in the pharmaceutical industry. The methods recognize that an appropriate combination of process controls and predefined material attributes and intermediate quality attributes (IQAs) during processing may provide greater assurance of product quality than end-product testing. The efficient analysis method to monitor the relationship between process and quality should be used. Process analytical technology (PAT) was introduced to analyze IQAs during the process of establishing regulatory specifications and facilitating continuous manufacturing improvement. Although PAT was introduced in the pharmaceutical industry in the early 21st century, new PAT tools have been introduced during the last 20 years. In this review, we present the recent pharmaceutical PAT tools and their application in pharmaceutical unit operations. Based on unit operations, the significant IQAs monitored by PAT are presented to establish a control strategy for CPV and real time release testing (RTRT). In addition, the equipment type used in unit operation, PAT tools, multivariate statistical tools, and mathematical preprocessing are introduced, along with relevant literature. This review suggests that various PAT tools are rapidly advancing, and various IQAs are efficiently and precisely monitored in the pharmaceutical industry. Therefore, PAT could be a fundamental tool for the present QbD and CPV to improve drug product quality.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Ji Hyeon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 heon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Korea;
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| |
Collapse
|
7
|
Partial Least Squares Regression-Based Robust Forward Control of the Tableting Process. Pharmaceutics 2020; 12:pharmaceutics12010085. [PMID: 31968698 PMCID: PMC7022652 DOI: 10.3390/pharmaceutics12010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 11/20/2022] Open
Abstract
In this study, we established a robust feed-forward control model for the tableting process by partial least squares regression using the near-infrared (NIR) spectra and physical attributes of the granules to be compressed. The NIR spectra of granules are rich in information about chemical attributes, such as the compositions of any ingredients and moisture content. Polymorphism and pseudo-polymorphism can also be quantitatively evaluated by NIR spectra. We used the particle size distribution, flowability, and loose and tapped density as the physical attributes of the granules. The tableting process was controlled by the lower punch fill depth and the minimum distance between the upper and lower punches at compression, which were specifically related to the tablet weight and thickness, respectively. The feed-forward control of the process would be expected to provide some advantages for automated and semi-automated continuous pharmaceutical manufacturing. As a result, our model, using a combination of NIR spectra and the physical attributes of granules to control the distance between punches, resulted in respectable agreement between the predicted process parameters and actual settings to produce tablets of the desired thickness.
Collapse
|
8
|
Tanaka R, Duggirala NK, Hattori Y, Otsuka M, Suryanarayanan R. Formation of Indomethacin-Saccharin Cocrystals during Wet Granulation: Role of Polymeric Excipients. Mol Pharm 2019; 17:274-283. [PMID: 31756100 DOI: 10.1021/acs.molpharmaceut.9b01004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Formulation of a cocrystal into a solid pharmaceutical dosage form entails numerous processing steps during which there is risk of dissociation. In an effort to reduce the number of unit operations, we have attempted the in situ formation of an indomethacin-saccharin (INDSAC) cocrystal during high-shear wet granulation (HSWG). HSWG of IND (poorly water-soluble drug) and SAC (coformer), with polymers (granulating agents), was carried out using ethanol as the granulation liquid and yielded INDSAC cocrystal granules. Therefore, cocrystal formation and granulation were simultaneously accomplished. Our objectives were to (i) evaluate the influence of polymers on cocrystal formation kinetics during wet granulation and (ii) mechanistically understand the role of polymers in facilitating the cocrystal formation. Polyvinylpyrrolidone (PVP), hydroxypropyl cellulose (HPC), and polyethylene oxide (PEO) were chosen to investigate the influence of soluble polymers. The cocrystal formation kinetics was influenced by the polymer (PVP < HPC < PEO) and its concentration. The interaction of the polymer with cocrystal components inhibited the cocrystal formation. Complete cocrystal formation was observed in the presence of PEO, a polymer which does not interact with IND and SAC.
Collapse
Affiliation(s)
- Ryoma Tanaka
- Department of Pharmaceutics, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Naga Kiran Duggirala
- Department of Pharmaceutics, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | | | | | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
9
|
Singh BN. Product Development, Manufacturing, and Packaging of Solid Dosage Forms Under QbD and PAT Paradigm: DOE Case Studies for Industrial Applications. AAPS PharmSciTech 2019; 20:313. [PMID: 31529232 DOI: 10.1208/s12249-019-1515-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/18/2019] [Indexed: 11/30/2022] Open
Abstract
An integrated approach based on QbD and PAT provides a systematic and innovative framework for product development, manufacturing, and quality risk management. In this context, the significance of the outcome of design of experiments (DOEs) to the selection of the product design, robust commercial manufacturing process, design space, and overall control strategy remains vital for the success of a drug product throughout its life cycle. This paper aims at discussing selected recent DOE case studies conducted during QbD-based and integrated QbD/PAT-based development of solid oral formulations and process improvement studies. The main focus of this paper is to highlight the rationales and importance of design selection during development and applications of mathematical models and statistical tools in analyzing DOE and PAT data for developing a design space, control strategy, and improved process monitoring. A total of 25 case studies (includes 9 PAT application studies) have been discussed in this paper which cover 11 manufacturing processes commonly utilized for solid dosage forms. Two case studies relevant to selection of packaging design for solid dosage forms are also briefly discussed to complete the scope. Overall, for a successful modern QbD approach, it is highly important that DOEs are conducted and analyzed in a logical sequence which involves designs that are phase-appropriate and quality-driven and facilitate both statistical and chemometric thinking at each development stage. This approach can result into higher regulatory flexibility along with lower economic burden during life cycle of a product, irrespective of regulatory path used (NDA or ANDA).
Collapse
|
10
|
Near infrared spectroscopy for rapid and in-line detection of particle size distribution variability in lactose during mixing. Int J Pharm 2019; 566:454-462. [PMID: 31170478 DOI: 10.1016/j.ijpharm.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/15/2019] [Accepted: 06/01/2019] [Indexed: 11/20/2022]
Abstract
Particle size distribution (PSD) variability in excipients may cause unacceptable prolongation of mixing time needed to achieve blend homogeneity. Therefore, it is vital to modulate mixing through real-time monitoring of PSD variability. Notwithstanding the criticality of PSD variability, real-time measurement of PSD during mixing is relatively unexplored; and this is the focus of the present study. The model excipient was commercial grade lactose with modified PSD that conformed to the manufacturer's specifications. It was mixed with microcrystalline cellulose and chlorpheniramine in a double-cone blender. High and low dose blends were prepared and near infrared spectroscopy (NIRS) was used to collect spectral data, during mixing, for chemometric modelling of PSD. Four modelling approaches based on partial least squares regression (PLSR) were applied. The models were highly interpretable and rapidly measured PSD near the beginning of mixing (5th to 6th rotation), with accuracy (relative standard error of prediction <5.0%, r2 ≈ 1.00, slope ≈ 1.00). Therefore, NIR chemometric modelling is a viable strategy to detect variability in PSD of excipients during blending and could enable real-time control of mixing. Most significantly, this strategy is potentially transferable to the monitoring and controlling of batch and continuous processes, where PSD is either a source of process variability or a critical quality attribute.
Collapse
|
11
|
Xie Q, Wu R, Zhong X, Dong Y, Fan Q. Real-time simultaneous detection of microbial contamination and determination of an ultra low-content active pharmaceutical ingredient in tazarotene gel by near-infrared spectroscopy. RSC Adv 2018; 8:27037-27044. [PMID: 35539985 PMCID: PMC9083254 DOI: 10.1039/c8ra03079k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/25/2018] [Indexed: 11/21/2022] Open
Abstract
This paper proposes and proves a real-time and non-destructive strategy for sensitive and simultaneous detection of microbial contamination and determination of an ultra low-content active pharmaceutical ingredient in tazarotene gel by near-infrared (NIR) spectroscopy. In this experiment, 88 samples of tazarotene gel (0.41–0.65 mg g−1 of tazarotene) were prepared using the standard addition method. Among them, 47 samples were inoculated with 50 μl of different concentrations of Escherichia coli (E. coli) DH5a in Luria–Bertani (LB) broth to give 1–4 log CFU g−1 of E. coli DH5a in the gel, 6 samples with 50 μl of LB broth, and 35 samples with nothing. Based on the gel NIR transflectance spectra, E. coli DH5a in the gel was detected by the counter propagation artificial neural network (CP-ANN) model with a classification accuracy of 100.0%, while tazarotene in the gel was simultaneously determined by the partial least squares regression (PLS) model with a root mean square error of cross-validation of 0.0232 mg g−1. Furthermore, 9 samples of real tazarotene gel were used to verify the practicality of the established NIR spectroscopy. The developed NIR strategy can be used to correctly and quickly release the pharmaceutical gels, required for sensitive and simultaneous control of microbial contamination and the active pharmaceutical ingredient (API) content, to the next stage. This paper proposes a real-time and non-destructive strategy for sensitive and simultaneous detection of microbial contamination and determination of an ultra low-content active pharmaceutical ingredient in tazarotene gel by NIR spectroscopy.![]()
Collapse
Affiliation(s)
- Qian Xie
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- China
| | - Ruanqi Wu
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- China
| | - Xiaoxiao Zhong
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- China
| | - Yanhong Dong
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- China
| | - Qi Fan
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- China
| |
Collapse
|