1
|
Zhang L, Guo J, You Q. A rhodamine-based fluorescent probe bearing 8-hydroxyquinoline group for the highly selective detection of Hg 2+ and its practical application in cell imaging. RSC Adv 2024; 14:31861-31867. [PMID: 39380642 PMCID: PMC11460212 DOI: 10.1039/d4ra06115b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
A highly selective and sensitive fluorescent probe, RHOQ, was designed for the detection of Hg2+ by incorporating an 8-hydroxyquinoline moiety onto a rhodamine molecular platform with a suitable linker. In MeOH-Tris (20 mM, pH = 7.4, 1 : 9, v/v) buffer solution, RHOQ exhibited 550-fold fluorescence enhancement at 594 nm upon addition of Hg2+, with a fast response and a low detection limit (9.67 × 10-8 M). The 1 : 1 binding mode of RHOQ with Hg2+ was established using Job's plot, UV-Vis, and fluorescence spectroscopic titration methods. Furthermore, RHOQ was successfully applied for the detection of Hg2+ in living cells with good membrane permeability.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biology, Xinzhou Normal University Xinzhou Shanxi Province 034000 P. R. China
| | - Jun Guo
- Shanxi Weipu Testing Technology Co. Ltd Taiyuan Shanxi Province 030012 P. R. China
| | - Qihua You
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Road, Saikung Hong Kong SAR Hong Kong
| |
Collapse
|
2
|
Real-time visualization of lysosomal pH fluctuations in living cells with a ratiometric fluorescent probe. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Zhang Q, Ding H, Xu X, Wang H, Liu G, Pu S. Rational design of a FRET-based ratiometric fluorescent probe with large Pseudo-Stokes shift for detecting Hg 2+ in living cells based on rhodamine and anthracene fluorophores. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121242. [PMID: 35429865 DOI: 10.1016/j.saa.2022.121242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The development of fluorescent dyes has been a continuing attractive research topic in the field of fluorescence sensing and bioimaging technologies, most of them were subject to a single signal change. In this work, a novel colorimetric and ratiometric fluorescent probe 1 based on rhodamine and anthracene groups was designed and synthesized via the fluorescence resonance energy transfer (FRET) mechanism. Probe 1 showed excellent selectivity, higher sensitivity and ratiometric response to Hg2+ in the CH3CN/H2O (1/1, v/v) system, with a fast response time (less than 30 s); The fluorescent color changed from purple to orange and the solution visible to the naked-eye changed from colorless to pink. The Pseudo-Stokes shift was 174 nm upon addition of Hg2+. The limit of detection (LOD) was calculated to be 0.81 μM and 0.38 μM according to fluorescence and UV/vis measurements, respectively. Furthermore, a possible mechanism for the detection of Hg2+ by probe 1 was verified by using 1H NMR, ESI-MS, and HPLC spectra. Meanwhile, probe 1 was successfully used for cell imaging for the detection of Hg2+ in living cells.
Collapse
Affiliation(s)
- Qian Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Xiaohang Xu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Huaxin Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, PR China.
| |
Collapse
|
4
|
Ozmen P, Demir Z, Karagoz B. An easy way to prepare reusable rhodamine-based chemosensor for selective detection of Cu2+ and Hg2+ ions. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Hosseinjani-Pirdehi H, Mahmoodi NOA, Taheri A. Selective Cu2+ detection by a novel fluorescence hydrazone – Base probe in aqueous media. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Karuk Elmas SN, Dinckan S, Arslan FN, Aydin D, Savran T, Yilmaz I. A rhodamine based nanosensor platform for Hg2+ sensing in near–perfect aqueous medium: Smartphone, test strip and real sample applications. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Wei J, Sun H, Jiang Y, Miao B, Han X, Zhao Y, Ni Z. A novel 1,8-naphthalimide-based Cu 2+ ion fluorescent probe and its bioimaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120037. [PMID: 34116417 DOI: 10.1016/j.saa.2021.120037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
A new 1,8-naphthalimide-based Schiff base compound, named as (Z)-2-butyl-6-(((2-hydroxyphenyl)imino)methyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (BHBD), has been simply synthesized with high yields. BHBD can be employed as a "turn-on" fluorescent probe for Cu2+ ion with high sensitivity, high selectivity and relatively low detection limit (0.48 × 10-6 M). The fluorescence emission of BHBD is very weak in H2O/THF (v/v: 7/3) mixture, which is significantly enhanced after addition of Cu2+ ion. The proposed mechanism is verified by 1H NMR, Job's plot and TOF-MS experiments. Anti-interference experiment, cytotoxicity assay and pH influence results indicated that BHBD meets the requirements of bioimaging. Therefore, BHBD has been successfully applied in detecting Cu2+ ion in HeLa cells.
Collapse
Affiliation(s)
- Jianhua Wei
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Hao Sun
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Yan Jiang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Baoxi Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Xiang'en Han
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Yun Zhao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Zhonghai Ni
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| |
Collapse
|
8
|
Aydin D, Alici MK. Phenolphthalein Conjugated Schiff Base as a Dual Emissive Fluorogenic Probe for the Recognition Aluminum (III) and Zinc (II) Ions. J Fluoresc 2021; 31:797-805. [PMID: 33713010 DOI: 10.1007/s10895-021-02704-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/11/2021] [Indexed: 12/01/2022]
Abstract
In this study, a new phenolphthalein derivative, FFIZNA, has been planned and successfully prepared in an uncomplicated way. The probe FFIZNA could selectively monitor Al3+ and Zn2+ among other relevant cations with diverse colors through a turn-on emission response in EtOH:HEPES (9/1;v/v) media owing to the chelation enhanced fluorescence (CHEF), prevention of ESIPT, -C=N- isomerization and PET of the probe FFIZNA. The interactions of Al3+ and Zn2+ with the probe FFIZNA were confirmed by emission spectroscopy, Job's plot and 1H-NMR titration substantiated 1:2 reaction stoichiometry between FFIZNA and Al3+ and Zn2+. The time-response study displayed that the emission of FFIZNA with Al3+ and Zn2+, rapidly boosted and reached the stable value in less than 3.0 and 4.0 min, respectively. Therefore, the FFIZNA has successfully been utilized to the dual recognition of Al3+ and Zn2+ in solutions. Phenolphthalein conjugated schiff base as a dual emissive fluorogenic probe for the detection aluminum (III) and zinc (II) ions.
Collapse
Affiliation(s)
- Duygu Aydin
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.
| | - Meliha Kutluca Alici
- Department of the Laboratory and Veterinary Healthy, Nigde Omer Halisdemir University, 51700, Nigde, Turkey
| |
Collapse
|
9
|
Aouina A, Oloyede HO, Akong RA, Abdelhak J, Görls H, Plass W, Eseola AO. Exploring Broad Molecular Derivatization as Tool in Selective Fluorescent Detection of Mercury(II) by a Series of Large Stokes Shift 1,4-Bis(5-phenyl-1 H-imidazol-4-yl)benzenes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c05087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aroua Aouina
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, 2092 El Manar, Tunisia
| | - Hammed Olawale Oloyede
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Department of Chemistry, Faculty of Science, University of Ibadan, 200284 Ibadan, Nigeria
- Department of Chemistry, School of Science, Adeyemi College of Education, 350101 Ondo, Ondo State, Nigeria
| | - Raymond Akong Akong
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Department of Chemistry, Faculty of Science, University of Ibadan, 200284 Ibadan, Nigeria
| | - Jawher Abdelhak
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, 2092 El Manar, Tunisia
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Abiodun Omokehinde Eseola
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Materials Chemistry Group, Department of Chemical Sciences, Redeemer’s University Ede, 232102 Ede, Osun State, Nigeria
| |
Collapse
|
10
|
Wang P, Xue T, Sheng A, Cheng L, Zhang J. Application of Chemoselective Ligation in Biosensing. Crit Rev Anal Chem 2020; 52:170-193. [DOI: 10.1080/10408347.2020.1791044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pei Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
- Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, Shanghai, P. R. China
| | - Tianxiang Xue
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Anzhi Sheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Liangfen Cheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| |
Collapse
|
11
|
Qiu Q, Yu B, Huang K, Qin D. A Fluoran-Based Cu2+-Selective Fluorescent Probe and its Application in Cell Imaging. J Fluoresc 2020; 30:859-866. [DOI: 10.1007/s10895-020-02551-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
|
12
|
Zhu L, Yang X, Luo X, Hu B, Huang W. A highly selective fluorescent probe based on coumarin and pyrimidine hydrazide for Cu2+ ion detection. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Shi W, Lu X, Zhang S, Li H, Liu M, Dong B. C N based PAMAM polymer dots: Fluorescent property and Cu2+ sensing application. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem Rev 2019; 119:10403-10519. [PMID: 31314507 DOI: 10.1021/acs.chemrev.9b00145] [Citation(s) in RCA: 680] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coumarins are a very large family of compounds containing the unique 2H-chromen-2-one motif, as it is known according to IUPAC nomenclature. Coumarin derivatives are widely found in nature, especially in plants and are constituents of several essential oils. Up to now, thousands of coumarin derivatives have been isolated from nature or produced by chemists. More recently, the coumarin platform has been widely adopted in the design of small-molecule fluorescent chemosensors because of its excellent biocompatibility, strong and stable fluorescence emission, and good structural flexibility. This scaffold has found wide applications in the development of fluorescent chemosensors in the fields of molecular recognition, molecular imaging, bioorganic chemistry, analytical chemistry, materials chemistry, as well as in the biology and medical science communities. This review focuses on the important progress of coumarin-based small-molecule fluorescent chemosensors during the period of 2012-2018. This comprehensive and critical review may facilitate the development of more powerful fluorescent chemosensors for broad and exciting applications in the future.
Collapse
Affiliation(s)
- Duxia Cao
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
| | - Peter Verwilst
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Seyoung Koo
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | | | - Jong Seung Kim
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , China.,School of Chemistry and Chemical Engineering , Guangxi University , Nanning , Guangxi 530004 , P. R. China
| |
Collapse
|
15
|
Wang Y, Wu H, Wu WN, Mao XJ, Zhao XL, Xu ZQ, Xu ZH, Fan YC. Novel rhodamine-based colorimetric and fluorescent sensor for the dual-channel detection of Cu 2+ and Co 2+/trivalent metal ions and its AIRE activities. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:1-9. [PMID: 30593993 DOI: 10.1016/j.saa.2018.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
A rhodamine hydrazone 1 bearing coumarin moiety was designed and prepared. Compound 1 exhibited high selectivity toward Co2+ and trivalent metal ions with fluorescence enhancement in CH3OH solution. However, 1 selectively responded to Al3+ in nearly pure H2O media and was further applied to monitor Al3+ in live cells. Moreover, 1 could also act as a colorimetric probe toward Cu2+ in either CH3OH or H2O solution. In addition, sensor 1 displayed aggregation-induced ratiometric emission (AIRE) activities in mixed H2O/CH3OH solution.
Collapse
Affiliation(s)
- Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Hao Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xian-Jie Mao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhou-Qing Xu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, School of Chemistry and Chemical Engineering, Xuchang University, 461000, PR China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| |
Collapse
|
16
|
Wu WN, Wu H, Zhong RB, Wang Y, Xu ZH, Zhao XL, Xu ZQ, Fan YC. Ratiometric fluorescent probe based on pyrrole-modified rhodamine 6G hydrazone for the imaging of Cu 2+ in lysosomes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:121-127. [PMID: 30616165 DOI: 10.1016/j.saa.2018.12.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
A novel rhodamine-based Schiff base derivative was obtained via the simple condensation of substituted formyl-1H-pyrrole and rhodamine 6G hydrazone. Fluorescence resonance energy transfer enabled the subsequent use of the derivative as a naked-eye colorimetric and ratiometric fluorescent sensor for Cu2+ in semi-aqueous solution, and the existence of the morpholine group enabled the further application of the sensor in imaging Cu2+ in the lysosomes of HeLa cells.
Collapse
Affiliation(s)
- Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Hao Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Run-Bin Zhong
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, School of Chemistry and Chemical Engineering, Xuchang University, 461000, PR China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhou-Qing Xu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| |
Collapse
|
17
|
A New Spiropyran-Based Sensor for Colorimetric and Fluorescent Detection of Divalent Cu2+ and Hg2+ Ions and Trivalent Ce3+, Cr3+ and Al3+ Ions. J Fluoresc 2019; 29:569-575. [DOI: 10.1007/s10895-019-02372-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 03/20/2019] [Indexed: 01/06/2023]
|
18
|
Gu L, Zheng T, Xu Z, Song Y, Li H, Xia S, Shen L. A novel bifunctional fluorescent and colorimetric probe for detection of mercury and fluoride ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:88-95. [PMID: 30205308 DOI: 10.1016/j.saa.2018.08.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/03/2018] [Accepted: 08/29/2018] [Indexed: 05/19/2023]
Abstract
A fluorescent and colorimetric probe L1 based on a simple coumarin derivative for detection of Hg2+ and F- ions was developed. Upon addition of Hg2+ and F- ions, L1 underwent desulfurization and desilylation, respectively, to induce marked increase in the fluorescence intensity and sharp color change from light yellow to dark purple and light brown, respectively. Probe L1 could be used for sensing and for quantitative measurement of Hg2+ and F- ions by both UV-vis and fluorescence spectra. The bifunctional probe exhibited a high selectivity over other competitive cations and anions and could be used in both organic and aqueous media over a wide pH range.
Collapse
Affiliation(s)
- Liang Gu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Tao Zheng
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Zhenxiang Xu
- Penglai Xinguang Pigment Chemical Co., Ltd, Penglai 265601, PR China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China.
| | - Shengtao Xia
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Li Shen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| |
Collapse
|
19
|
Li G, Bai L, Tao F, Deng A, Wang L. A dual chemosensor for Cu 2+ and Hg 2+ based on a rhodamine-terminated water-soluble polymer in 100% aqueous solution. Analyst 2018; 143:5395-5403. [PMID: 30295689 DOI: 10.1039/c8an01130c] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel water-soluble polymer bearing a rhodamine receptor (PEGSRh) was synthesized as a dual chemosensor for the recognition of Cu2+ and Hg2+ in 100% aqueous solution. PEGSRh not only exhibited a sensitive colorimetric response towards Cu2+ and Hg2+ but also showed a selective turn-on fluorescence response towards Hg2+ over other metal ions. The binding stoichiometry for the complexation of PEGSRh with Cu2+ and Hg2+ was confirmed to be 1 : 1 by Job plot analysis. The low detection limits were found to be 5.92 × 10-7 M for Cu2+ and 2.85 × 10-6 M for Hg2+. The responses of PEGSRh to Cu2+ and Hg2+ were both stable over wide pH ranges. In addition, the fluorescence intensity changes of PEGSRh solution by the inputs of Hg2+, Cu2+ and EDTA have been used to construct a combinational logic gate. Again, an INHIBIT logic gate was also obtained by employing Cu2+ and EDTA as the chemical inputs and the absorbance signal as the output. Moreover, test papers were prepared facilely using PEGSRh for practical on-site detection of Cu2+ and Hg2+.
Collapse
Affiliation(s)
- Guang Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Liping Bai
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Farong Tao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Aixia Deng
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Liping Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
20
|
Wang Y, Meng Q, Han Q, He G, Hu Y, Feng H, Jia H, Zhang R, Zhang Z. Selective and sensitive detection of cysteine in water and live cells using a coumarin–Cu2+ fluorescent ensemble. NEW J CHEM 2018. [DOI: 10.1039/c8nj03809k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A coumarin–Cu2+ ensemble based fluorescent chemosensor was developed for the selective detection of cysteine in aqueous media and live cells.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Qingtao Meng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
- Key Laboratory for Functional Material
| | - Qian Han
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Guangjie He
- Department of Forensic Medicine
- Xinxiang Medical University
- XinXiang
- P. R. China
| | - Yaoyun Hu
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Huan Feng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Hongmin Jia
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material
- Educational Department of Liaoning Province
- University of Science and Technology Liaoning
- Anshan 114051
- P. R. China
| |
Collapse
|
21
|
Wang S, Ding H, Wang Y, Fan C, Tu Y, Liu G, Pu S. An ‘‘off–on–off’’ sensor for sequential detection of Cu2+ and hydrogen sulfide based on a naphthalimide–rhodamine B derivative and its application in dual-channel cell imaging. RSC Adv 2018; 8:33121-33128. [PMID: 35548160 PMCID: PMC9086380 DOI: 10.1039/c8ra05963b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/11/2018] [Indexed: 12/03/2022] Open
Abstract
A novel colorimetric and fluorometric sensor with unique dual-channel emission to sequentially detect Cu2+ and hydrogen sulfide (H2S) was synthesized from naphthalimide–rhodamine B through the PET and FRET mechanism. The sensor showed a selective “off–on” fluorescence response with a 120-fold increase toward Cu2+, and its limits of detection were 0.26 μM and 0.17 μM for UV-vis and fluorescence measurements, respectively. In addition, 1–Cu2+ was an efficient “on–off” sensor to detect H2S with detection limits of 0.40 μM (UV-vis measurement) and 0.23 μM (fluorescence measurement), respectively. Furthermore, the sensor can also be used for biological imaging of intracellular staining in living cells. Therefore, the sensor should be highly promising for the detection of low level Cu2+ and H2S with great potential in many practical applications. A novel colorimetric and fluorometric sensor with unique dual-channel emission to sequentially detect Cu2+ and hydrogen sulfide (H2S) was synthesized from naphthalimide–rhodamine B through the PET and FRET mechanism.![]()
Collapse
Affiliation(s)
- Shuai Wang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| | - Yuesong Wang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| | - Yayi Tu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- P. R. China
| |
Collapse
|