1
|
Chen X, Wang QW, Zhan TL, Sun Y, Zhang XR, Liu K, Liu XW. Nitrogen@Carbon Quantum Dots for Fluorescence Detection of L-alanine, L-methionine and L-cysteine. J Fluoresc 2025:10.1007/s10895-024-04124-7. [PMID: 39798019 DOI: 10.1007/s10895-024-04124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Nitrogen@Carbon quantum dots (N@CQDs) are prepared using microwave hydrothermal method, and polyvinylpyrrolidone (PVP) and melamine are used as mixed C source and N source. Microwave reaction conditions of preparing the N@CQDs are 170 ℃ and 3 h. This N@CQDs are are used as fluorescence probe for detection of amino acids. The N@CQDs can recognize L-alanine in water solution, and simultaneously recognize both L-methionine and L-cysteine in dimethyl sulfoxide (DMSO) solution. The linear ranges for L-alanine, L-methionine and L-cysteine are 0-15 µM, 2-50 µM and 0-17 µM, respectively. While limits of detection (LOD) for them are 11.092 nM, 7.8067 nM and 0.67476 nM, respectively. Compared to presently available detection methods, as-prepared N@CQDs have the advantage of high sensitivity and selectivity. Furthermore, coexistence of other amino acids has minimal interference in the detection of L-alanine, L-methionine and L-cysteine. For the as-prepared N@CQDs, solvent plays important roles in influencing the identification of amino acid types and detection sensitivity.
Collapse
Affiliation(s)
- Xin Chen
- School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
- Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, West Anhui University, Lu'an, 237012, China
| | - Qing-Wan Wang
- School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Tong-Ling Zhan
- School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Yue Sun
- School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Xiao-Rui Zhang
- School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Kun Liu
- School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China.
- Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, West Anhui University, Lu'an, 237012, China.
| | - Xiao-Wu Liu
- School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China.
- Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, West Anhui University, Lu'an, 237012, China.
| |
Collapse
|
2
|
Chang R, Chen CY, Gao L, Li Y, Lee ZH, Zhao H, Sue ACH, Chang KC. Highly selective Cu 2+ detection with a naphthalimide-functionalised pillar[5]arene fluorescent chemosensor. Org Biomol Chem 2024; 22:745-752. [PMID: 37982316 DOI: 10.1039/d3ob01558k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Ligand 1, a rim-differentiated pillar[5]arene macrocycle modified with five naphthalimide groups through click chemistry, serves as an effective ratiometric fluorescent chemosensor for Cu2+. In contrast to the monomeric naphthalimide control compound 2, which shows only monomer emission, ligand 1 demonstrates dual emission characteristics encompassing both the monomer and excimer of the naphthalimide moieties. The binding properties of ligand 1 toward 15 different metal ions were systematically investigated in CH2Cl2/CH3CN (v/v, 1 : 1) by UV-vis and fluorescence spectroscopy. Remarkably, ligand 1 exhibits exceptional selectivity for Cu2+ ions. Upon complexation with Cu2+, the excimer emission of ligand 1 diminishes, concomitant with an enhancement of its monomer emission. The binding ratio for 1·Cu2+ was determined to be 1 : 1, with an association constant of (3.39 ± 0.40) × 105 M-1 calculated using a nonlinear least-squares curve-fitting method. Furthermore, the limit of detection (LOD) was found to be 185 ± 7 nM. Our results from 1H NMR titration, high-resolution mass spectrometry analysis and density functional theory calculations of 1·Cu2+ suggest synergistic coordination between Cu2+ and the triazole groups on ligand 1.
Collapse
Affiliation(s)
- Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Chan-Yu Chen
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Liya Gao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Yana Li
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Zui-Harng Lee
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Hongxia Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Kai-Chi Chang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| |
Collapse
|
3
|
Yao H, Hu YP, Yang HR, Yang BH, Wang JW, Zhang YM, Wei TB, Lin Q. Ion recognition properties of 2,2'-bibenzimidazole regulated by ammonium-modified pillar[5]arenes. Analyst 2023; 148:1221-1226. [PMID: 36762553 DOI: 10.1039/d3an00095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With the increasing issues of environmental degradation and health problem, the selective detection of toxic ions has attracted considerable attention from researchers. Chemical fluorescent sensors with the advantages of facile operation, high sensitivity, rapid response, and easy visualization are emerging as powerful detection tools towards ions. However, the selective recognition of ions is always hindered by the presence of other interfering substances. Herein, we show that supramolecular host-guest interaction based on a pillar[5]arene provides a new opportunity to regulate the ionic recognition properties of guest molecules. A pillar[5]arene-based host-guest complex HG was constructed through the host-guest interaction between ammonium functionalized pillar[5]arene (HAP5) and 2,2'-bibenzimidazole (G). The host-gust complex HG can realize the successive, highly selective, and sensitive detection of specific ions. It was found that only in the presence of HAP5, the sensitivity towards cations was evidently enhanced, and selective successive recognition for I- and HSO4- was achieved. Those results indicate that the introduction of HAP5 can effectively improve the ion recognition performance of 2,2'-bibenzimidazole, so it is a feasible strategy using supramolecular host-guest interaction to regulate the ionic recognition properties of guest molecules.
Collapse
Affiliation(s)
- Hong Yao
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Yin-Ping Hu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Hao-Ran Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Bao-Hong Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Jin-Wang Wang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| |
Collapse
|
4
|
Baghal Behyar M, Hasanzadeh M, Seidi F, Shadjou N. Sensing of Amino Acids: Critical role of nanomaterials for the efficient biomedical analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Shi C, Li H, Shi XF, Zhao L, Qiu H. Chiral pillar[5]arene-functionalized silica microspheres: synthesis, characterization and enantiomer separation. Chem Commun (Camb) 2022; 58:3362-3365. [DOI: 10.1039/d1cc06978k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral pillar[5]arene-functionalized silica microspheres were prepared and characterized for the first time, which can be used as a new kind of chiral stationary phases for effective enantioseparation under reversed-phase and...
Collapse
|
6
|
Shi C, Li H, Shi X, Zhao L, Qiu H. Chiral pillar[n]arenes: Conformation inversion, material preparation and applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Li Y, Wen J, Li J, Wu Z, Li W, Yang K. Recent Applications of Pillar[ n]arene-Based Host-Guest Recognition in Chemosensing and Imaging. ACS Sens 2021; 6:3882-3897. [PMID: 34665606 DOI: 10.1021/acssensors.1c01510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pillar[n]arene is a novel kind of synthetic supramolecular macrocyclic host characterized by its particular pillar-shaped structure consisting of an electron-rich cavity and two finely adjustable rims. Benefiting from its rigid structure, facile synthesis, ease of functionalization, and outstanding host-guest chemistry, pillar[n]arene shows great potential for diverse applications. Significantly, the host-guest recognition of pillar[n]arene provides a novel approach for chemosensing and imaging. Herein, this Review critically and comprehensively reviews the applications of pillar[n]arene-based host-guest recognition in chemosensing and imaging. The sensing and imaging mechanisms as well as the unique roles and advantages of pillar[n]arene-based host-guest recognition are summarized. In addition, preparations of hybrid materials based on pillar[n]arene and inorganic materials are also introduced comprehensively in the light of chemosensing and imaging. Finally, current challenges and perspectives on pillar[n]arene-based host-guest recognition in chemosensing and imaging are outlined.
Collapse
Affiliation(s)
- Yutong Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Jia Wen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Jiangshan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Zejia Wu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Wei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Kui Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
8
|
Affiliation(s)
- Roymon Joseph
- Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India – 682013
- Department of Chemistry University of Calicut Malappuram Kerala India – 673635
| |
Collapse
|
9
|
Wu GY, Liang C, Hu YX, Wang XQ, Yin GQ, Lu Z. Hierarchical self-assembly of discrete bis-[2]pseudorotaxane metallacycle with bis-pillar[5]arene via host-guest interactions and their redox-responsive behaviors. RSC Adv 2020; 11:1187-1193. [PMID: 35423686 PMCID: PMC8693504 DOI: 10.1039/d0ra09920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/20/2020] [Indexed: 11/21/2022] Open
Abstract
A discrete rhomboidal metallacycle R functionalized with bis-[2]pseudorotaxane of [Cu(phenanthroline)2]+ derivatives was successfully synthesized via coordination-driven self-assembly. Furthermore, the host-guest complexation of such a bis-[2]pseudorotaxane metallacycle with a bis-pillar[5]arene (bisP5) allowed for the formation of a new family of cross-linked supramolecular polymers R⊃(bisP5)2, which displayed interesting redox-responsive properties. By taking advantage of the substantial structural differences between the coordination geometries of [Cu(phenanthroline)2]+ and [Cu(phenanthroline)2]2+, the weight-average diffusion coefficients D of the supramolecular polymer were adjusted through changing the redox state of the Cu(i)/Cu(ii) complexes.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| | - Chao Liang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| |
Collapse
|
10
|
Khan SA, Choudhury R, Majumdar M, Nandi NB, Roy S, Misra TK. Gluconate‐Stabilized Silver Nanoparticles as pH Dependent Dual‐Nanosensor for Quantitative Evaluation of Methionine and Cysteine. ChemistrySelect 2020. [DOI: 10.1002/slct.202001654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shamim Ahmed Khan
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| | - Rupasree Choudhury
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| | - Moumita Majumdar
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| | | | - Shaktibrata Roy
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| | - Tarun Kumar Misra
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| |
Collapse
|
11
|
Joseph R. Selective Detection of Fe 3+, F -, and Cysteine by a Novel Triazole-Linked Decaamine Derivative of Pillar[5]arene and Its Metal Ion Complex in Water. ACS OMEGA 2020; 5:6215-6220. [PMID: 32226907 PMCID: PMC7098014 DOI: 10.1021/acsomega.0c00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Appropriately functionalized pillar[n]arenes are elegant supramolecular hosts for ion and molecule sensing. A water-soluble decaamine derivative of pillar[5]arene (APA) bearing triazole and amide moieties is synthesized. The ion and molecular recognition properties of APA are studied by fluorescence, UV-visible, and 1H nuclear magnetic resonance (NMR) spectroscopy. The APA selectively detects Fe3+ among 11 studied ions, which are important in several biological processes. Moreover, the in situ prepared Fe3+ complex of APA (FeAPA) exhibits the highest responsiveness toward F- (∼12-fold) among 11 anions and cysteine (∼120-fold) among the 20 naturally occurring amino acids by a fluorescence turn-on mechanism.
Collapse
|
12
|
Yao H, Zhou Q, Wang J, Chen YY, Kan XT, Wei TB, Zhang YM, Lin Q. Highly selective Fe 3+ and F -/H 2PO 4- sensor based on a water-soluble cationic pillar[5]arene with aggregation-induced emission characteristic. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117215. [PMID: 31158772 DOI: 10.1016/j.saa.2019.117215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/25/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
A water-soluble cationic pillar[5]arene (CWP5) without lager conjugated construction was first reported as a novel pillar[5]arene-based aggregation-induced emission luminogen (AIEgen), which showed a remarkable aggregation-induced emission (AIE) with the concentration increasing. The AIE effect of CWP5 has affected by different solvent, it had the lowest critical aggregation concentration (CAC) value and highest fluoresence emission intensity in DMSO solution. Simultaneously, CWP5 can serve as a chemosensor for the successively fluorescent detection of Fe3+ and F-/H2PO4- with high sensitivity and selectivity. A rewritable portable test kit made from CWP5 provides a possibility to on-site detection and manufacture of encryption and decryption materials.
Collapse
Affiliation(s)
- Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Qi Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Jiao Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Yan-Yan Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Xiao-Tong Kan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| |
Collapse
|
13
|
Fernando A, Mako TL, Levenson AM, Cesana PT, Mendieta AM, Racicot JM, DeBoef B, Levine M. A polycationic pillar[5]arene for the binding and removal of organic toxicants from aqueous media. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1632457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ashvin Fernando
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Teresa L. Mako
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | | | - Paul T. Cesana
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | | | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
14
|
Ko W, Lee HS. Development of specific l-methionine sensors by FRET-based protein engineering. RSC Adv 2019; 9:15648-15656. [PMID: 35514845 PMCID: PMC9064335 DOI: 10.1039/c9ra01317b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Amino acids are essential nutrients that are not only used as protein building blocks but are also involved in various biochemical processes and in the development of human diseases. Quantitative analysis of amino acids in complex biological samples is an important analytical process used for understanding amino acid biochemistry and diagnosis of human diseases. In this study, a protein sensor based on fluorescence resonance energy transfer (FRET) was designed for the quantitative analysis of l-Met, in which a fluorescent unnatural amino acid (CouA) and YFP were used as a FRET pair. A natural Met-binding protein (MetQ) was chosen as a sensor protein, and CouA and YFP were incorporated into the protein by genetic code expansion technology and genetic fusion. Among the four sites screened for CouA incorporation into MetQ, R189 was selected as the best site for l-Met sensing. The sensor protein (YFP-MetQ-R189CouA) showed a large FRET signal change (2.7-fold increase) upon l-Met binding. To improve amino acid specificity of the sensor protein, the ligand-binding site was engineered, and the mutant sensor (YFP-MetQ-R189CouA-H88F) with the H88F mutation was identified, which showed no FRET signal change with d-Met and l-Gln at 50 μM concentration and retained the maximum FRET signal change with l-Met. The optimized sensor protein was evaluated for biochemical applications. l-Met concentration in FBS and optical purity in a mixture of d- and l-Met were successfully determined. Because l-Met is biochemically important owing to its involvement in cancer cell growth and autophagy, the sensor protein would be useful for quantitative analysis of l-Met in a complex biological sample. In addition, the design strategy used in this study can be applied to other small molecule-binding proteins for the development of protein sensors for important biomolecules.
Collapse
Affiliation(s)
- Wooseok Ko
- Department of Chemistry, Sogang University Seoul 121-742 Republic of Korea +82-2-705-7893 +82-2-705-7958
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University Seoul 121-742 Republic of Korea +82-2-705-7893 +82-2-705-7958
| |
Collapse
|
15
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
16
|
Layer-by-layer assembly of anionic-/cationic-pillar[5]arenes multilayer films as chiral interface for electrochemical recognition of tryptophan isomers. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.196] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Chen JF, Lin Q, Zhang YM, Yao H, Wei TB. Pillararene-based fluorescent chemosensors: recent advances and perspectives. Chem Commun (Camb) 2017; 53:13296-13311. [DOI: 10.1039/c7cc08365c] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This feature article summarizes recent research in the pillararene-based fluorescent chemosensor field in terms of ion sensing, small molecule recognition, biomolecule detection, fluorescent supramolecular aggregates, and biomedical imaging.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|