1
|
Spongy Co/Ni-Bio-MOF-based electrochemical aptasensor for detection of kanamycin based on coral-like ZrO2@Au as an amplification platform. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
de Faria LV, Lisboa TP, Campos NDS, Alves GF, Matos MAC, Matos RC, Munoz RAA. Electrochemical methods for the determination of antibiotic residues in milk: A critical review. Anal Chim Acta 2021; 1173:338569. [PMID: 34172150 DOI: 10.1016/j.aca.2021.338569] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Several antibiotics have been applied to veterinary medicine due to their broad-spectrum of antibacterial activity and prophylactic power. Residues of these antibiotics can be accumulated in dairy cattle, in addition to promoting contamination of the environment and, in more serious cases, in milk, causing a public health problem. Different regulatory agencies establish maximum residue limits for these antibiotics in milk, so it becomes important to develop sensitive analytical methods for monitoring these compounds. Electrochemical techniques are important analytical tools in analytical chemistry because they present low cost, simplicity, high sensitivity, and adequate analytical frequency (sample throughput) for routine analyses. In this sense, this review summarizes the state of the art of the main electrochemical sensors and biosensors, instrumental techniques, and sample preparation used for the development of analytical methods, published in the last five years, for the monitoring of different classes of antibiotics: aminoglycosides, amphenicols, beta-lactams, fluoroquinolones, sulfonamides, and tetracyclines, in milk samples. The different strategies to develop electrochemical sensors and biosensors are critically compared considering their analytical features. The mechanisms of electrochemical oxidation/reduction of the antibiotics are revised and discussed considering strategies to improve the selectivity of the method. In addition, current challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Lucas Vinícius de Faria
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Thalles Pedrosa Lisboa
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Náira da Silva Campos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Guilherme Figueira Alves
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | | | - Renato Camargo Matos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil.
| | | |
Collapse
|
3
|
Yao X, Shen J, Liu Q, Fa H, Yang M, Hou C. A novel electrochemical aptasensor for the sensitive detection of kanamycin based on UiO-66-NH 2/MCA/MWCNT@rGONR nanocomposites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4967-4976. [PMID: 33006333 DOI: 10.1039/d0ay01503b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we designed and synthesized a nanocomposite comprising an amine-functionalized metal organic framework (UiO-66-NH2), a multiwalled carbon nanotube@reduced graphene oxide nanoribbon (MWCNT@rGONR) and a covalent organic framework (COF) synthesized using melamine and cyanuric acidmonomers via polycondensation (represented by MCA). The UiO-66-NH2/MCA/MWCNT@rGONR nanocomposite was used as a sensitive platform for an electrochemical aptasensor to detect kanamycin (kana). Owing to the rich chemical functionality, amino-rich structure and excellent electrochemical activity, the cDNA strands with terminal amino groups can not only anchor over the UiO-66-NH2/MCA/MWCNT@rGONR surface but also penetrate into the interior of porous UiO-66-NH2/MCA/MWCNT@rGONR networks. The characterization of the UiO-66-NH2/MCA/MWCNT@rGONR nanocomposite was performed by scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). Furthermore, cyclic voltammetry (CV) and square wave voltammetry (SWV) were employed for the electrochemical performance study of this biosensor. The results indicated that the UiO-66-NH2/MCA/MWCNT@rGONR nanocomposite exhibited high bioaffinity toward the aptamer and the lowest limit of detection at 13 nM (S/N = 3) within a linearity of the kana concentration of 25-900 nM. In addition, it possessed great repeatability, stability and selectivity and obtained satisfactory recovery results in the real analysis of fish meat and milk, indicating the great potential for analytical measurements in food safety.
Collapse
Affiliation(s)
- Xin Yao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | | | | | | | | | | |
Collapse
|
4
|
Zhang X, Wu D, Zhou X, Yu Y, Liu J, Hu N, Wang H, Li G, Wu Y. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115668] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Han X, Yu Z, Li F, Shi W, Fu C, Yan H, Zhang G. Two kanamycin electrochemical aptamer-based sensors using different signal transduction mechanisms: A comparison of electrochemical behavior and sensing performance. Bioelectrochemistry 2019; 129:270-277. [PMID: 31254804 DOI: 10.1016/j.bioelechem.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 12/15/2022]
Abstract
Two typical kanamycin-A (KAN-A) electrochemical aptamer-based sensors employing different signal transduction mechanisms were deliberately designed and constructed with a similar structure. One sensor (sensor-1) was based on the classical probe conformation changing mode (PCCM) with a methylene blue (MB) label used as an electrochemical tag; the other sensor (sensor-2) used the target-induced signal probe shifting (TISPS) method with a free MB label in the assay solution. The difference in signal transduction mechanisms resulted in big differences in basic electrochemical behavior and comprehensive sensing performance. The results show that both sensor types exhibit different electrochemical behavior in square wave voltammetry, cyclic voltammetry, and in sensitivity, with detection limits of 3.0 nM for sensor-1 and 60.0 pM for sensor-2 in buffer. When validated for practical and quantitative detection of tap water and milk samples, both sensing methods performed well with detection limits of <260 nM and measurement times of <40 min. In addition, accuracy was good with mean recoveries of 72.3-92.6% and precision was acceptable with a relative standard deviation (RSD) of ≤14.2%. The basis for the similarities and differences in performance is also presented.
Collapse
Affiliation(s)
- Xianda Han
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China; Post-Doctoral Research Center, Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Zhigang Yu
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China; Post-Doctoral Research Center, Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China.
| | - Fengqin Li
- Post-Doctoral Research Center, Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Wenbing Shi
- Post-Doctoral Research Center, Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Cuicui Fu
- Post-Doctoral Research Center, Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Hong Yan
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Guiling Zhang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China.
| |
Collapse
|
6
|
Umrao S, S A, Jain V, Chakraborty B, Roy R. Smartphone-based kanamycin sensing with ratiometric FRET. RSC Adv 2019; 9:6143-6151. [PMID: 35517283 PMCID: PMC9060919 DOI: 10.1039/c8ra10035g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/12/2019] [Indexed: 11/21/2022] Open
Abstract
Smartphone-based fluorescence detection is a promising avenue for biosensing that can aid on-site analysis. However, quantitative detection with fluorescence in the field has been limited due to challenges with robust excitation and calibration requirements. Here, we show that ratiometric analysis with Förster resonance energy transfer (FRET) between dye pairs on DNA aptamers can enable rapid and sensitive kanamycin detection. Since our detection scheme relies on ligand binding-induced changes in the aptamer tertiary structure, it is limited only by the kinetics of ligand binding to the aptamer. Our FRET-based kanamycin binding aptamer (KBA) sensor displays two linear ranges of 0.05-5 nM (detection limit of 0.18 nM) and 50-900 nM of kanamycin. The aptamer displays high specificity even in the presence of the 'natural' background from milk. By immobilizing the aptamer in the flow cell, our KBA sensor design is also suitable for repeated kanamycin detection. Finally, we show that the ratiometric FRET-based analysis can be implemented on a cheap custom-built smartphone setup. This smartphone-based FRET aptamer scheme detects kanamycin in a linear range of 50-500 nM with a limit of detection (LOD) of 28 nM.
Collapse
Affiliation(s)
- Saurabh Umrao
- Department of Chemical Engineering, Indian Institute of Science Bangalore 560012 India +91-80-2360-8121 +91-80-2293-3115 +91-80-2293-3118
| | - Anusha S
- Department of Chemical Engineering, Indian Institute of Science Bangalore 560012 India +91-80-2360-8121 +91-80-2293-3115 +91-80-2293-3118
| | - Vasundhara Jain
- Department of Chemical Engineering, Indian Institute of Science Bangalore 560012 India +91-80-2360-8121 +91-80-2293-3115 +91-80-2293-3118
| | - Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science Bangalore 560012 India +91-80-2360-8121 +91-80-2293-3115 +91-80-2293-3118
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science Bangalore 560012 India +91-80-2360-8121 +91-80-2293-3115 +91-80-2293-3118
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560012 India
- Center for Biosystems Science and Engineering, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
7
|
He B, Yan S. Voltammetric kanamycin aptasensor based on the use of thionine incorporated into Au@Pt core-shell nanoparticles. Mikrochim Acta 2019; 186:77. [PMID: 30627864 DOI: 10.1007/s00604-018-3188-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/14/2018] [Indexed: 01/06/2023]
Abstract
A signal-on aptasensor is described for the voltammetric determination of kanamycin (KANA). Au@Pt core-shell nanoparticles with large surface and good electrical conductivity were synthetized and act as both a conductive material and as the carrier for complementary strands (CS2) and thionine (TH). In the presence of KANA, the electrochemical response of TH changes due to hybridization between CS1 immobilized on the electrode and the Au@Pt-CS2/TH system. The peak current increases linearly with the logarithm of the KANA concentration in the range from 1 pM to 1 μM, and the limit of detection is 0.16 pM. The sensor was characterized in terms of selectivity, reproducibility and stability, and satisfactory results were obtained. It was also utilized for the determination of KANA in (spiked) chicken samples. The recoveries (95.8-103.2%) demonstrate the potential of the method for KANA detection in real samples. Graphical abstract A signal-on aptasensor for kanamycin (KANA) was developed by using Au@Pt core-shell nanoparticles as nanocarrier for probe aptamer and as a sensing probe.
Collapse
Affiliation(s)
- Baoshan He
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou High & New Technology Industries Development Zone, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China.
| | - Sasa Yan
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou High & New Technology Industries Development Zone, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| |
Collapse
|
8
|
Yao Y, Wang X, Duan W, Li F. A label-free, versatile and low-background chemiluminescence aptasensing strategy based on gold nanocluster catalysis combined with the separation of magnetic beads. Analyst 2018; 143:709-714. [DOI: 10.1039/c7an01765k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A label-free, versatile and low-background chemiluminescence sensing strategy based on gold nanocluster catalysis combined with magnetic separation was developed.
Collapse
Affiliation(s)
- Yueyue Yao
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Wenna Duan
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| |
Collapse
|