1
|
Zhan Y, Hu H, Yu Y, Chen C, Zhang J, Jarnda KV, Ding P. Therapeutic strategies for drug-resistant Pseudomonas aeruginosa: Metal and metal oxide nanoparticles. J Biomed Mater Res A 2024; 112:1343-1363. [PMID: 38291785 DOI: 10.1002/jbm.a.37677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Pseudomonas aeruginosa (PA) is a widely prevalent opportunistic pathogen. Multiple resistant strains of PA have emerged from excessive or inappropriate use of antibiotics, making their eradication increasingly difficult. Therefore, the search for highly efficient and secure novel antimicrobial agents is crucial. According to reports, there is an increasing exploration of nanometals for antibacterial purposes. The antibacterial mechanisms involving the nanomaterials themselves, the release of ions, and the induced oxidative stress causing leakage and damage to biomolecules are widely accepted. Additionally, the study of the cytotoxicity of metal nanoparticles is crucial for their antibacterial applications. This article summarizes the types of metal nanomaterials and metal oxide nanomaterials that can be used against PA, their respective unique antibacterial mechanisms, cytotoxicity, and efforts made to improve antibacterial performance and reduce toxicity, including combination therapy with other materials and antibiotics, as well as green synthesis approaches.
Collapse
Affiliation(s)
- Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Huiting Hu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Cuimei Chen
- School of Public Health, Xiangnan University, Chenzhou, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Kermue Vasco Jarnda
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| |
Collapse
|
2
|
Cui T, Zhou D, Zhang Y, Kong D, Wang Z, Han Z, Song M, Aimaier X, Dan Y, Zhang B, Li H. A pH-Responsive Polycaprolactone-Copper Peroxide Composite Coating Fabricated via Suspension Flame Spraying for Antimicrobial Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2666. [PMID: 38893930 PMCID: PMC11173732 DOI: 10.3390/ma17112666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
In this study, a pH-responsive polycaprolactone (PCL)-copper peroxide (CuO2) composite antibacterial coating was developed by suspension flame spraying. The successful synthesis of CuO2 nanoparticles and fabrication of the PCL-CuO2 composite coatings were confirmed by microstructural and chemical analysis. The composite coatings were structurally homogeneous, with the chemical properties of PCL well maintained. The acidic environment was found to effectively accelerate the dissociation of CuO2, allowing the simultaneous release of Cu2+ and H2O2. Antimicrobial tests clearly revealed the enhanced antibacterial properties of the PCL-CuO2 composite coating against both Escherichia coli and Staphylococcus aureus under acidic conditions, with a bactericidal effect of over 99.99%. This study presents a promising approach for constructing pH-responsive antimicrobial coatings for biomedical applications.
Collapse
Affiliation(s)
- Tingting Cui
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Daofeng Zhou
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yu Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Decong Kong
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhijuan Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhuoyue Han
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Meiqi Song
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xierzhati Aimaier
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanxin Dan
- Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan;
| | - Botao Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315201, China
| | - Hua Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315201, China
| |
Collapse
|
3
|
Griauzdyte V, Jagelaviciene E. Antimicrobial Activity of Zinc against Periodontal Pathogens: A Systematic Review of In Vitro Studies. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2088. [PMID: 38138191 PMCID: PMC10744524 DOI: 10.3390/medicina59122088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: More than a billion people worldwide suffer from chronic periodontitis. The primary etiological factor of periodontal diseases is dental plaque and the bacteria it contains, particularly Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans. Zinc, owing to its antibacterial properties, can be employed in periodontology. The objective of this review was to analyze scientific literature that examines the effects of zinc on periopathogens. Materials and methods: A systematic review protocol of scientific literature was designed following PRISMA recommendations. Data search was conducted in PubMed, Web of Science, and ScienceDirect databases. Full-text articles in English that examine the effects of zinc on periopathogens and were published between 2011 and 2021 were included. Results: Fifteen articles were included in the analysis based on inclusion criteria. ZnO exhibited antibacterial activity against P. gingivalis and P. intermedia (p < 0.001). The minimum inhibitory concentration against P. gingivalis was 10 μg/mL. ZnO demonstrated a significant antibacterial effect, as evidenced by inhibition zones of 15.10 mm for S. oralis, 13.36 mm for P. gingivalis, 12.98 mm for S. sanguis, and 14.01 mm for P. intermedia. Zn (II)-based polymers inhibited the ragA and ragB genes of P. gingivalis. Titanium dental implants coated with ZnO effectively disrupted the cell walls of P. gingivalis and A. actinomycetemcomitans. ZnO inhibited the growth of P. gingivalis within 2 h and the growth of F. nucleatum and P. intermedia within 3 h. ZnO exhibited nontoxic effects, and concentrations up to 0.8 mg/L increased cell survival rates by up to 90%. Conclusions: The analysis of the literature confirms the antibacterial action of zinc against periodontal pathogenic bacteria. At low concentrations, these substances do not exhibit cytotoxic effects on fibroblasts.
Collapse
Affiliation(s)
- Viktorija Griauzdyte
- UAB Vilnius Implantology Center Clinic, A. Vivulskio Str. 7-102, LT-03162 Vilnius, Lithuania;
| | - Egle Jagelaviciene
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences, Eiveniu Str. 2, LT-50161 Kaunas, Lithuania
| |
Collapse
|
4
|
Xu M, Tan F, Luo W, Jia Y, Deng Y, Topham PD, Wang L, Yu Q. In Situ Fabrication of Silver Peroxide Hybrid Ultrathin Co-Based Metal-Organic Frameworks for Enhanced Chemodynamic Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22985-22998. [PMID: 37155995 DOI: 10.1021/acsami.3c03863] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bacterial-induced infectious diseases have always caused an unavoidable problem and lead to an increasing threat to human health. Hence, there is an urgent need for effective antibacterial strategies to treat infectious diseases. Current methods are often ineffective and require large amounts of hydrogen peroxide (H2O2), with harmful effects on normal healthy tissue. Chemodynamic therapy (CDT) provides an ideal infection microenvironment (IME)-activated paradigm to tackle bacterial-related diseases. To take full advantage of the specificity of IME and enhanced CDT for wounds with bacterial infection, we have designed an intelligent antibacterial system that exploits nanocatalytic ZIF-67@Ag2O2 nanosheets. In this system, silver peroxide nanoparticles (Ag2O2 NPs) were grown on ultrathin zeolitic imidazolate framework-67 (ZIF-67) nanosheets by in situ oxidation, and then, ZIF-67@Ag2O2 nanosheets with the ability to self-generate H2O2 were triggered by the mildly acidic environment of IME. Lamellar ZIF-67 nanosheets were shown to rapidly degrade and release Co2+, allowing the conversion of less reactive H2O2 into the highly toxic reactive oxygen species hydroxyl radicals (•OH) for enhanced CDT antibacterial properties. In vivo results revealed that the ZIF-67@Ag2O2 nanosheet system exhibits excellent antibacterial performance against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The proposed hybrid strategy demonstrates a promising therapeutic strategy to enable antibacterial agents with IME-responsive nanocatalytic activity to circumvent antibiotic resistance against bacterial infections.
Collapse
Affiliation(s)
- Mengmeng Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fangrong Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanru Luo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yifan Jia
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yan Deng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Paul D Topham
- Chemical Engineering and Applied Chemistry, School of Infrastructure and Sustainable Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B47ET, U.K
| | - LinGe Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
5
|
Khorshidi S, Younesi S, Karkhaneh A. Peroxide mediated oxygen delivery in cancer therapy. Colloids Surf B Biointerfaces 2022; 219:112832. [PMID: 36137337 DOI: 10.1016/j.colsurfb.2022.112832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Hypoxia is a serious obstacle in cancer treatment. The aberrant vascular network as well as the abnormal extracellular matrix arrangement results in formation of a hypoxic regions in tumors which show high resistance to the curing. Hypoxia makes the cancer treatment challengeable via two mechanisms; first and foremost, hypoxia changes the cell metabolism and leads the cells towards an aggressive and metastatic phenotype and second, hypoxia decreases the efficiency of the various cancer treatment modalities. Most of the cancer treatment methods including chemotherapy, radiotherapy, photodynamic therapy, sonodynamic therapy and immunotherapy are negatively affected by the oxygen deprivation. Therefore, the regional oxygenation is requisite to alleviate the negative impacts of the hypoxia on tumor cells and tumor therapy modalities. A great deal of effort has been put forth to resolve the problem of hypoxia in tumors. Peroxides have gained tremendous attention as oxygen generating components in cancer therapy. The concurrent loading of the peroxides and cancer treatment components into a single delivery system can bring about a multipurpose delivery system and substantially encourage the success of the cancer amelioration. In this review, we have tried to after the description of a relation between hypoxia and cancer treatment modalities, discuss the role of peroxides in tumor hyperoxygenation and cancer therapy success. Thereafter, we have summarized a number of vehicles for the delivery of the peroxide alone or in combination with other therapeutic components for cancer treatment.
Collapse
Affiliation(s)
- Sajedeh Khorshidi
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Sogol Younesi
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| |
Collapse
|
6
|
Xu M, Liu Y, Luo W, Tan F, Dong D, Li W, Wang L, Yu Q. A Multifunctional Nanocatalytic System Based on Chemodynamic-Starvation Therapies with Enhanced Efficacy of Cancer Treatment. J Colloid Interface Sci 2022; 630:804-816. [DOI: 10.1016/j.jcis.2022.10.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
7
|
Milan M, Hassan A, Can GA, Michal U, Pavel U, Barbora H, Hana P, Annusova A, Michal M, Ivo K. Multifunctional bandgap-reduced ZnO nanocrystals for photocatalysis, self-cleaning, and antibacterial glass surfaces. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Rastinfard A, Dalisson B, Barralet J. Aqueous decomposition behavior of solid peroxides: Effect of pH and buffer composition on oxygen and hydrogen peroxide formation. Acta Biomater 2022; 145:390-402. [PMID: 35405328 DOI: 10.1016/j.actbio.2022.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
The ability of solid peroxides to provide sustained release of both oxygen and hydrogen peroxide makes them potentially suitable for oxygen release or antibacterial applications. Most recent reports using solid peroxides to augment oxygen levels do so by compounding solid peroxide powders in polymers to retard the aqueous decomposition. Compounds with peroxidase activity may be added to reduce hydrogen peroxide toxicity. Peroxides are rarely pure and are mixed with oxide and themselves decompose to form hydroxides in water. Therefore, even if buffering strategies are used, locally the pH at the surface of aqueously immersed peroxide particles is inevitably alkaline. Since pH affects the decomposition of peroxides and hydrogen peroxide stability, this study compared for the first-time the aqueous decomposition products of hydrogen and inorganic peroxides that are in use or have been used for medical applications of have been evaluated preclinically; calcium peroxide (CaO2), magnesium peroxide (MgO2), zinc peroxide (ZnO2), sodium percarbonate (Na2CO3.1.5H2O2) and hydrogen peroxide (H2O2). Since plasma can be approximated to be carbonate buffered phosphate solution, we maintained pH using carbonate and phosphate buffers and compared results with citrate buffers. For a given peroxide compound, we identified not only a strong effect of pH but also of buffer composition on the extent to which oxygen and hydrogen peroxide formation occurred. The influence of buffer composition was not previously appreciated, thereby establishing in vitro parameters for better design of intentional release of specific decomposition species. STATEMENT OF SIGNIFICANCE: This paper compares for the first time the aqueous decomposition products oxygen and hydrogen peroxide of solid peroxy compounds of metal cations, (calcium, magnesium, sodium and zinc) across a pH range that could feasibly be found in the body, (pH 5,7, 9) either physiologically or pathologically. We find that in addition to pH, buffer composition is also a critically important factor, making translation from in vitro models challenging. Cytotoxicity was related to hydrogen peroxide release, alkalinity and in the case of zinc peroxide to the cation itself. In vitro and preclinical studies generally report release data from polymer-peroxide composites and rarely compare peroxides with one another. Together our data provide guidance for oxygen and ROS delivery from these inorganic materials.
Collapse
|
9
|
Zu Y, Wang Y, Yao H, Yan L, Yin W, Gu Z. A Copper Peroxide Fenton Nanoagent-Hydrogel as an In Situ pH-Responsive Wound Dressing for Effectively Trapping and Eliminating Bacteria. ACS APPLIED BIO MATERIALS 2022; 5:1779-1793. [PMID: 35319859 DOI: 10.1021/acsabm.2c00138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial infection has been a great threat to wounds due to the abuse of antibiotics and drug resistance. Elaborately constructing an efficient antibacterial strategy for accelerated healing of bacteria-infected wounds is of great importance. Herein, we develop a transferrin-conjugated copper peroxide nanoparticle-hydrogel (denoted as CP@Tf-hy) wound dressing with no toxicity to mammalian cells at a test dosage. When exposed to an initial acidic wound environment, the CP@Tf-hy simultaneously displays in situ self-supplied H2O2 and pH-responsive release of Fenton catalytic copper ions accompanied by highly toxic hydroxyl radical (•OH) generation against antibiotic-resistant bacteria. Meanwhile, the positively charged CP@Tf-hy can efficiently trap and restrain negatively charged bacteria to the range of •OH destruction to greatly overcome its intrinsic disadvantages of short life and diffusion distance. Importantly, the CP@Tf-hy consumes the bacterial overexpressed antioxidant glutathione while boosting Fenton catalytic copper(I) ions to generate more •OH. The synergistic effects of the enhanced Fenton reaction, responsive copper ion release, and bacterial trapping can achieve high bacterial elimination efficacy (7 log reduction). In vivo investigations demonstrate that the porous CP@Tf-hy significantly promotes hemostasis, cell proliferation, and migration of the wound, consequently accelerating bacteria-infected wound healing. The safe, low-cost, and all-in-one CP@Tf-hy holds great prospects as an antibacterial dressing for rapid resistant bacteria-infected purulent wound healing.
Collapse
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Wang
- College of Pharmacy, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Huiqin Yao
- College of Pharmacy, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wiesmann N, Mendler S, Buhr CR, Ritz U, Kämmerer PW, Brieger J. Zinc Oxide Nanoparticles Exhibit Favorable Properties to Promote Tissue Integration of Biomaterials. Biomedicines 2021; 9:biomedicines9101462. [PMID: 34680579 PMCID: PMC8533365 DOI: 10.3390/biomedicines9101462] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
Due to the demographic change, medicine faces a growing demand for tissue engineering solutions and implants. Often, satisfying tissue regeneration is difficult to achieve especially when co-morbidities hamper the healing process. As a novel strategy, we propose the incorporation of zinc oxide nanoparticles (ZnO NPs) into biomaterials to improve tissue regeneration. Due to their wide range of biocompatibility and their antibacterial properties, ZnO NPs are already discussed for different medical applications. As there are versatile possibilities of modifying their form, size, and function, they are becoming increasingly attractive for tissue engineering. In our study, in addition to antibacterial effects of ZnO NPs, we show for the first time that ZnO NPs can foster the metabolic activity of fibroblasts as well as endothelial cells, both cell types being crucial for successful implant integration. With the gelatin sponge method performed on the chicken embryo’s chorioallantoic membrane (CAM), we furthermore confirmed the high biocompatibility of ZnO NPs. In summary, we found ZnO NPs to have very favorable properties for the modification of biomaterials. Here, incorporation of ZnO NPs could help to guide the tissue reaction and promote complication-free healing.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-17-4034
| | - Simone Mendler
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| | - Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| |
Collapse
|
11
|
Huang L, Jiang S, Cai B, Wang G, Wang Z, Wang L. pH-Triggered nanoreactors as oxidative stress amplifiers for combating multidrug-resistant biofilms. Chem Commun (Camb) 2021; 57:4662-4665. [PMID: 33977986 DOI: 10.1039/d1cc00247c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Developing radical oxygen species (ROS)-generating nanoreactors as new "antibiotics" is a promising strategy for the treatment of multidrug-resistant (MDR) biofilm infections. Herein, we designed and fabricated silver nanoparticle-decorated calcium peroxide (CaO2) nanoreactors (CPA) for combating MDR biofilms. CPA could locally boost ROS production as oxidative stress amplifiers in a pH-triggered and self-catalytic manner in acidic biofilms, where H2O2 was released by the hydrolysis of CaO2 and sequentially catalyzed by Ag NPs in situ to generate O2˙-, thereby efficiently disrupting mature biofilms and killing bacteria.
Collapse
Affiliation(s)
- Lei Huang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. and Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shangming Jiang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. and Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. and Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Maheswari P, Harish S, Ponnusamy S, Muthamizhchelvan C. A novel strategy of nanosized herbal Plectranthus amboinicus, Phyllanthus niruri and Euphorbia hirta treated TiO 2 nanoparticles for antibacterial and anticancer activities. Bioprocess Biosyst Eng 2021; 44:1593-1616. [PMID: 34075470 DOI: 10.1007/s00449-020-02491-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023]
Abstract
Titanium dioxide nanoparticles exhibit good anticancer and antibacterial activities. They are known to be environmentally friendly, stable, less toxic, and have excellent biocompatibility nature. Due to these properties, they are well suited for biological applications particularly in biomedical applications such as drug delivery and cancer therapy. In this research article, three medicinal herbs namely, Plectranthus amboinicus (Karpooravalli), Phyllanthus niruri (Keezhanelli), and Euphorbia hirta (Amman Pacharisi), were used to modify the surface of the TiO2 nanoparticles. The synthesized nanoparticles were subjected to various characterization techniques. The samples are then subjected to MTT assay to determine cell viability. KB oral cancer cells are used for the determination of the anticancer nature of the pure and bio modified nanoparticles. It is observed that Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nanoparticles exhibit excellent anticancer activities among other bio modified and pure samples. The samples are then examined for antibacterial activities against three Gram-negative bacterial strains namely, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and two Gram-positive bacterial strains namely, Staphylococcus aureus and Streptococcus mutans, respectively. Among the modified and pure samples, Plectranthus amboinicus showed good antibacterial activity against Gram-positive and Gram-negative bacteria. In the Flow cytometry analysis, the generation of p53 protein expression from Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nano herbal particles shows the anti-cancerous nature of the sample. Then to determine the toxic nature of the Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nano herbal particles against normal cells, the NPs were subjected to MTT assay against normal L929 cells, and it was found to be safer and less toxic towards the normal cells.
Collapse
Affiliation(s)
- P Maheswari
- Department of Nautical Science, VELS Institute of Science, Technology and Advanced Studies, Thalambur, 603 103, India.,Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - S Harish
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka, 432-8011, Japan. .,Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - S Ponnusamy
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - C Muthamizhchelvan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| |
Collapse
|
13
|
Hussein HM, Ghafoor DD, Omer KM. Room temperature and surfactant free synthesis of zinc peroxide (ZnO2) nanoparticles in methanol with highly efficient antimicrobials. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
A Simple Ball Milling and Thermal Oxidation Method for Synthesis of ZnO Nanowires Decorated with Cubic ZnO 2 Nanoparticles. NANOMATERIALS 2021; 11:nano11020475. [PMID: 33668447 PMCID: PMC7918776 DOI: 10.3390/nano11020475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022]
Abstract
In this work, we propose the synthesis of ZnO nanostructures through the thermal oxidation of ball-milled powders with the introduction of Mg and Sn doping species at the preliminary step of milling. We investigate the advantages and challenges of this two steps process for the production and fabrication of highly crystalline ZnO nanowires. This simple method allows us to fabricate ZnO nanowires with a higher quality core crystal at a much lower temperature and for a shorter processing time than the state-of-the-art, and decorated with by ZnO2 nanoparticles as determined via TEM analysis. The main findings will show that the crystalline core of the nanowires is of hexagonal ZnO while the nanoparticles on the surface are ZnO2 cubic type. Generally, the method proves to be suitable for applications that require a high surface-to-volume ratio, for example, catalysis phenomena, in which the presence of zinc oxides species can play an important role.
Collapse
|
15
|
Synthesis and Characterization of Zinc Peroxide Nanoparticles for the Photodegradation of Nitrobenzene Assisted by UV-Light. Catalysts 2020. [DOI: 10.3390/catal10091041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The contamination of both soil and water by nitrobenzene (NB) is a problem that has been studied, where several reactive agents have been developed for the degradation of this compound as well as different methods. Nanoparticles with semiconductive properties have been studied for organic compounds photodegradation due to their assistance in optimizing the degradation processes. Two of the most promising photocatalysts are ZnO and TiO2 because of their optimal results. In the present work the performance of the zinc peroxide (ZnO2) nanoparticles was evaluated. ZnO2 nanoparticles were synthesized from zinc acetate and hydrogen peroxide using the Sol-Gel method under ultrasound assistance. The characterization was carried out by UV–Vis spectroscopy, infrared Fourier transform total reflectance (ATR-FT-IR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), Zeta potential, dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), and Energy Dispersive X-ray spectroscopy (EDX). The experiments for the degradation of NB were carried out in a photoreactor with UV lamps of 254 nm at 25 °C, using a solution of nitrobenzene with the nanoparticles. The best conditions for NB photodegradation were 30 ppm (ZnO2) and 15 ppm (NB) at pH 2, reaching up to 90% degradation in 2 h. The intermediates formed during the photodegradation of NB were identified by gas chromatography mass spectrometry.
Collapse
|
16
|
Fröber K, Bergs C, Pich A, Conrads G. Biofunctionalized zinc peroxide nanoparticles inhibit peri-implantitis associated anaerobes and Aggregatibacter actinomycetemcomitans pH-dependent. Anaerobe 2020; 62:102153. [DOI: 10.1016/j.anaerobe.2020.102153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
|
17
|
In Situ Crosslinking Bionanocomposite Hydrogels with Potential for Wound Healing Applications. J Funct Biomater 2019; 10:jfb10040050. [PMID: 31739421 PMCID: PMC6963958 DOI: 10.3390/jfb10040050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 01/19/2023] Open
Abstract
In situ forming hydrogels are a class of biomaterials that can fulfil a variety of important biomedically relevant functions and hold promise for the emerging field of patient-specific treatments (e.g., cell therapy, drug delivery). Here we report the results of our investigations on the generation of in situ forming hydrogels with potential for wound healing applications (e.g., complex blast injuries). The combination of polysaccharides that were oxidized to display aldehydes, amine displaying chitosan and nanostructured ZnO yields in situ forming bionanocomposite hydrogels. The physicochemical properties of the components, their cytotoxicity towards HaCat cells and the in vitro release of zinc ions on synthetic skin were studied. The in situ gel formation process was complete within minutes, the components were non-toxic towards HaCat cells at functional levels, Zn2+ was released from the gels, and such materials may facilitate wound healing.
Collapse
|