1
|
Lawson T, Gentleman AS, Lage A, Casadevall C, Xiao J, Petit T, Frosz MH, Reisner E, Euser TG. Low-Volume Reaction Monitoring of Carbon Dot Light Absorbers in Optofluidic Microreactors. ACS Catal 2023; 13:9090-9101. [PMID: 37441232 PMCID: PMC10334427 DOI: 10.1021/acscatal.3c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Optical monitoring and screening of photocatalytic batch reactions using cuvettes ex situ is time-consuming, requires substantial amounts of samples, and does not allow the analysis of species with low extinction coefficients. Hollow-core photonic crystal fibers (HC-PCFs) provide an innovative approach for in situ reaction detection using ultraviolet-visible absorption spectroscopy, with the potential for high-throughput automation using extremely low sample volumes with high sensitivity for monitoring of the analyte. HC-PCFs use interference effects to guide light at the center of a microfluidic channel and use this to enhance detection sensitivity. They open the possibility of comprehensively studying photocatalysts to extract structure-activity relationships, which is unfeasible with similar reaction volume, time, and sensitivity in cuvettes. Here, we demonstrate the use of HC-PCF microreactors for the screening of the electron transfer properties of carbon dots (CDs), a nanometer-sized material that is emerging as a homogeneous light absorber in photocatalysis. The CD-driven photoreduction reaction of viologens (XV2+) to the corresponding radical monocation XV•+ is monitored in situ as a model reaction, using a sample volume of 1 μL per measurement and with a detectability of <1 μM. A range of different reaction conditions have been systematically studied, including different types of CDs (i.e., amorphous, graphitic, and graphitic nitrogen-doped CDs), surface chemistry, viologens, and electron donors. Furthermore, the excitation irradiance was varied to study its effect on the photoreduction rate. The findings are correlated with the electron transfer properties of CDs based on their electronic structure characterized by soft X-ray absorption spectroscopy. Optofluidic microreactors with real-time optical detection provide unique insight into the reaction dynamics of photocatalytic systems and could form the basis of future automated catalyst screening platforms, where samples are only available on small scales or at a high cost.
Collapse
Affiliation(s)
- Takashi Lawson
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Alexander S. Gentleman
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Ava Lage
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Carla Casadevall
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Jie Xiao
- Helmholtz-Zentrum
Berlin für Materialien und Energy GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Tristan Petit
- Helmholtz-Zentrum
Berlin für Materialien und Energy GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Michael H. Frosz
- Max
Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Tijmen G. Euser
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
2
|
Groeneveld I, Jaspars A, Akca IB, Somsen GW, Ariese F, van Bommel MR. Use of liquid-core waveguides as photochemical reactors and/or for chemical analysis – An overview. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
3
|
Özbakır Y, Jonáš A, Kiraz A, Erkey C. A new type of microphotoreactor with integrated optofluidic waveguide based on solid-air nanoporous aerogels. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180802. [PMID: 30564391 PMCID: PMC6281902 DOI: 10.1098/rsos.180802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
In this study, we developed a new type of microphotoreactor based on an optofluidic waveguide with aqueous liquid core fabricated inside a nanoporous aerogel. To this end, we synthesized a hydrophobic silica aerogel monolith with a density of 0.22 g cm-3 and a low refractive index of 1.06 that-from the optical point of view-effectively behaves like solid air. Subsequently, we drilled an L-shaped channel within the monolith that confined both the aqueous core liquid and the guided light, the latter property arising due to total internal reflection of light from the liquid-aerogel interface. We characterized the efficiency of light guiding in liquid-filled channel and-using the light delivered by waveguiding-we carried out photochemical reactions in the channel filled with aqueous solutions of methylene blue dye. We demonstrated that methylene blue could be efficiently degraded in the optofluidic photoreactor, with conversion increasing with increasing power of the incident light. The presented optofluidic microphotoreactor represents a versatile platform employing light guiding concept of conventional optical fibres for performing photochemical reactions.
Collapse
Affiliation(s)
- Yaprak Özbakır
- Department of Chemical and Biological Engineering, Koc University, 34450 Sarıyer, Istanbul, Turkey
| | - Alexandr Jonáš
- The Czech Academy of Sciences, Institute of Scientific Instruments, Královopolská 147, 612 64 Brno, Czech Republic
| | - Alper Kiraz
- Department of Physics, Koc University, 34450 Sarıyer, Istanbul, Turkey
- Department of Electrical and Electronics Engineering, Koc University, 34450 Sarıyer, Istanbul, Turkey
| | - Can Erkey
- Department of Chemical and Biological Engineering, Koc University, 34450 Sarıyer, Istanbul, Turkey
| |
Collapse
|
4
|
Wang T, Liu J, Nie F. Non-dye cell viability monitoring by using pH-responsive inverse opal hydrogels. J Mater Chem B 2018; 6:1055-1065. [PMID: 32254293 DOI: 10.1039/c7tb02631e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in the field of drug screening focus on accurate, rapid and high-throughput screening methods. In our work, hydrogel inverse opal photonic crystal microspheres (HPCMs) were fabricated through a templating method and exhibited a robust and reversible response to temperature and pH. The response performance was tested under various temperature (25-55 °C) and pH (1.5-7.5) conditions and the reflective peak shifted noticeably within the visible wavelength range. Furthermore, HPCMs were used as drug delivery carriers and not only displayed high doxorubicin (DOX) drug loading but also presented thermo/pH-induced drug release properties. More importantly, these carriers were shown to be good reporters for monitoring cell viability due to their tunable colour variation. This capability was applied to H460 cell cultures with or without DOX. The structure colour of HPCMs varied in different cell culture microenvironments, and cell apoptosis was able to be distinguished. In this way, this fast, non-dyeing method for reporting cell viability in tumour cytotoxicity assays has potential in the field of drug screening and may give new insights into the use of structural colour to report results in drug screening systems.
Collapse
Affiliation(s)
- Tengfei Wang
- Division of Nanobionic Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, P. R. China.
| | | | | |
Collapse
|