1
|
Hassan F, Tang Y, Bisoyi HK, Li Q. Photochromic Carbon Nanomaterials: An Emerging Class of Light-Driven Hybrid Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401912. [PMID: 38847224 DOI: 10.1002/adma.202401912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Indexed: 06/28/2024]
Abstract
Photochromic molecules have remarkable potential in memory and optical devices, as well as in driving and manipulating molecular motors or actuators and many other systems using light. When photochromic molecules are introduced into carbon nanomaterials (CNMs), the resulting hybrids provide unique advantages and create new functions that can be employed in specific applications and devices. This review highlights the recent developments in diverse photochromic CNMs. Photochromic molecules and CNMs are also introduced. The fundamentals of different photochromic CNMs are discussed, including design principles and the types of interactions between CNMs and photochromic molecules via covalent interactions and non-covalent bonding such as π-π stacking, amphiphilic, electrostatic, and hydrogen bonding. Then the properties of photochromic CNMs, e.g., in photopatterning, fluorescence modulation, actuation, and photoinduced surface-relief gratings, and their applications in energy storage (solar thermal fuels, photothermal batteries, and supercapacitors), nanoelectronics (transistors, molecular junctions, photo-switchable conductance, and photoinduced electron transfer), sensors, and bioimaging are highlighted. Finally, an outlook on the challenges and opportunities in the future of photochromic CNMs is presented. This review discusses a vibrant interdisciplinary research field and is expected to stimulate further developments in nanoscience, advanced nanotechnology, intelligently responsive materials, and devices.
Collapse
Affiliation(s)
- Fathy Hassan
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, El-Gharbia, Egypt
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Cyclodextrin functionalized multi-layered MoS2 nanosheets and its biocidal activity against pathogenic bacteria and MCF-7 breast cancer cells: Synthesis, characterization and in-vitro biomedical evaluation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Mirzaei B, Zarrabi A, Noorbakhsh A, Amini A, Makvandi P. A reduced graphene oxide-β-cyclodextrin nanocomposite-based electrode for electrochemical detection of curcumin. RSC Adv 2021; 11:7862-7872. [PMID: 35423323 PMCID: PMC8695096 DOI: 10.1039/d0ra10701h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, a sensitive electrochemical sensor was fabricated based on a beta-cyclodextrin–reduced graphene oxide (β-CD–rGO) nanocomposite for measuring curcumin concentration.
Collapse
Affiliation(s)
- Behzad Mirzaei
- Department of Biotechnology
- Faculty of Biological Science and Technology
- University of Isfahan
- Iran
| | - Ali Zarrabi
- Department of Biotechnology
- Faculty of Biological Science and Technology
- University of Isfahan
- Iran
- Sabanci University
| | - Abdollah Noorbakhsh
- Department of Nanotechnology Engineering
- Faculty of Chemistry
- University of Isfahan
- Iran
| | - Abbas Amini
- Centre for Infrastructure Engineering
- Western Sydney University
- Penrith 2751
- Australia
- Department of Mechanical Engineering
| | - Pooyan Makvandi
- Chemistry Department
- Faculty of Science
- Shahid Chamran University of Ahvaz
- Ahvaz 6153753843
- Iran
| |
Collapse
|
5
|
Olean-Oliveira A, Oliveira Brito GA, Teixeira MFS. Mechanism of Nanocomposite Formation in the Layer-by-Layer Single-Step Electropolymerization of π-Conjugated Azopolymers and Reduced Graphene Oxide: An Electrochemical Impedance Spectroscopy Study. ACS OMEGA 2020; 5:25954-25967. [PMID: 33073122 PMCID: PMC7557956 DOI: 10.1021/acsomega.0c03391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/27/2020] [Indexed: 05/11/2023]
Abstract
This work presents a study of the formation mechanism of electrochemically deposited alternating layers of azopolymer and graphene oxide, as well as a systematic study of the physicochemical characteristics of the resulting nanocomposite films by electrochemical impedance spectroscopy. The nanocomposite films were constructed by cyclic electropolymerization, which allowed for the assembly of thin films with alternating azopolymers and reduced graphene oxide (rGO) layers in one step. Morphological characterizations were performed by atomic force microscopy and scanning electron microscopy and verified that the electrodeposition of the poly(azo-BBY) polymeric film occurred during the anodic sweep, and the deposition of graphene oxide sheets took place during the cathodic sweep. By analyzing the electrochemical impedance spectra using equivalent circuit models, variations in the resistance and capacitance values of the system were monitored as a function of the amount of electrodeposited material on the fluorine doped tin oxide electrode. In addition, the interfacial phenomena that occurred during the electroreduction of the rGO sheets were monitored with the same method.
Collapse
Affiliation(s)
- André Olean-Oliveira
- Department
of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente, São Paulo 19060-900, Brazil
| | - Gilberto A. Oliveira Brito
- Department
of Chemistry, Pontal Institute of Exact and Natural Sciences, Federal University of Uberlândia, Ituiutaba, Minas Gerais 38302-402, Brazil
| | - Marcos F. S. Teixeira
- Department
of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente, São Paulo 19060-900, Brazil
| |
Collapse
|
6
|
Bodik M, Jergel M, Majkova E, Siffalovic P. Langmuir films of low-dimensional nanomaterials. Adv Colloid Interface Sci 2020; 283:102239. [PMID: 32854017 DOI: 10.1016/j.cis.2020.102239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
A large number of low-dimensional nanomaterials having different shapes and being dispersible in solvents open a fundamental question if there is a universal deposition technique for the monolayer formation. A monolayer formation of various nanomaterials at the air-water interface, also known as a Langmuir film, is a well-established technique even for the large group of the recently developed low-dimensional nanomaterials. In this review, we cover the monolayer formation of the zero-dimensional, one-dimensional and two-dimensional nanomaterials. Thanks to the formation of a Langmuir layer at the thermodynamic equilibrium, by using a suitable nanomaterial dispersion and subphase, the monolayers can be formed from all kinds of materials, ranging from the graphene oxide to the semiconducting quantum dots. In this review, we will discuss the basic requirements for the successful formation of monolayers and summarize the recent scientific advances in the field of Langmuir films.
Collapse
|
7
|
Hou N, Wang R, Wang F, Bai J, Zhou J, Zhang L, Hu J, Liu S, Jiao T. Fabrication of Hydrogels via Host-Guest Polymers as Highly Efficient Organic Dye Adsorbents for Wastewater Treatment. ACS OMEGA 2020; 5:5470-5479. [PMID: 32201839 PMCID: PMC7081645 DOI: 10.1021/acsomega.0c00076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/24/2020] [Indexed: 05/23/2023]
Abstract
New self-assembled hydrogel materials of poly(vinyl alcohol)/cyclodextrin-modified poly(acrylic acid)/azobenzene-modified poly(acrylic acid) (PVA/PAA-CD/PAA-Azo) were successfully prepared via host-guest interactions and hydrogen bonds. The as-prepared hydrogel materials were characterized by various techniques, including Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, ultraviolet spectroscopy, and specific surface area tests. The prepared hydrogels with different concentrations of PVA exhibited different network structures. In addition, ultraviolet (UV) light irradiation and temperature change induce a gel-sol phase transition in the hydrogel materials. The obtained hydrogel materials could be used as good adsorbents for two model organic dye molecules, which was mainly due to electrostatic interactions between methylene blue/rhodamine B (MB/RhB) and the gels in the adsorption process. In particular, the adsorption processes of the as-prepared hydrogel materials conformed to the pseudo-first-order model with a high correlation coefficient, which indicates that gel has a potential application in the field of wastewater purification.
Collapse
Affiliation(s)
- Nan Hou
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Ran Wang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Fan Wang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jiahui Bai
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jingxin Zhou
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Lexin Zhang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jie Hu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Shufeng Liu
- Key
Laboratory of Optic-electric Sensing and Analytical Chemistry for
Life Science, Ministry of Education, College of Chemistry and Molecular
Engineering, Qingdao University of Science
and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
8
|
He Y, Wang R, Sun C, Liu S, Zhou J, Zhang L, Jiao T, Peng Q. Facile Synthesis of Self-Assembled NiFe Layered Double Hydroxide-Based Azobenzene Composite Films with Photoisomerization and Chemical Gas Sensor Performances. ACS OMEGA 2020; 5:3689-3698. [PMID: 32118184 PMCID: PMC7045547 DOI: 10.1021/acsomega.9b04290] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/30/2020] [Indexed: 05/18/2023]
Abstract
Two kinds of layered double hydroxide (LDH) Langmuir composite films containing azobenzene (Azo) groups were successfully prepared by Langmuir-Blodgett (LB) technology. Then, an X-ray diffractometer (XRD), a transmission electron microscope (TEM), and an atomic force microscope (AFM) were used to investigate the structures of NiFe-LDH and the uniform morphologies of the composite LB films. The photoisomerization and acid-base gas sensor performances of the obtained thin film samples were tested by infrared visible (FTIR) spectroscropy and ultraviolet visible (UV-vis) spectroscropy. It is proved that the Azo dye molecules in the composite film are relatively stable to photoisomerization. In addition, the prepared composite films have high sensing sensitivity and good recyclability for acid-base response gases. The present research proposes a new clue for designing thin film materials for chemical gas response with good stability and sensitivity.
Collapse
Affiliation(s)
- Ying He
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Ran Wang
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Chenguang Sun
- National
Engineering Research Center for Equipment and Technology of Cold Strip
Rolling, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Shufeng Liu
- Key
Laboratory of Optic-electric Sensing and Analytical Chemistry for
Life Science, Ministry of Education, College of Chemistry and Molecular
Engineering, Qingdao University of Science
and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Jingxin Zhou
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Lexin Zhang
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P.
R. China
| | - Qiuming Peng
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P.
R. China
| |
Collapse
|
9
|
Ma K, Wang R, Jiao T, Zhou J, Zhang L, Li J, Bai Z, Peng Q. Preparation and aggregate state regulation of co-assembly graphene oxide-porphyrin composite Langmuir films via surface-modified graphene oxide sheets. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124023] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Hou N, Wang R, Geng R, Wang F, Jiao T, Zhang L, Zhou J, Bai Z, Peng Q. Facile preparation of self-assembled hydrogels constructed from poly-cyclodextrin and poly-adamantane as highly selective adsorbents for wastewater treatment. SOFT MATTER 2019; 15:6097-6106. [PMID: 31271185 DOI: 10.1039/c9sm00978g] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Self-assembled hydrogel materials constructed from cyclodextrin polymer (P-CD)/adamantane-modified poly acrylic acid (PAA-Ad) were designed and prepared via host-guest interactions. It was observed that the prepared supramolecular hydrogels had an interconnected three-dimensional porous network. In addition, the obtained hydrogels showed a recovery performance and it was confirmed that the host-guest interactions between β-cyclodextrin and adamantane were the main driving force for the formation of the hydrogels. The mechanical properties of the hydrogels could be adjusted by varying the concentrations of PAA-Ad. In particular, the prepared supramolecular hydrogels exhibited superior performances in water purification. The results demonstrated that the hydrogels possessed different mechanisms in the adsorption of the four typical poisonous organic dye molecules used, including bisphenol A (BPA), 4-aminoazobenzene (N-Azo), methylene blue (MB), and rhodamine B (RhB). The hydrogels mainly adsorbed N-Azo by host-guest interaction and adsorbed BPA by host-guest interaction and hydrogen bond synergy. They also adsorbed MB and RhB by hydrogen bonding and electrostatic interaction.
Collapse
Affiliation(s)
- Nan Hou
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China. and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Ran Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Rui Geng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Fan Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China. and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Zhenhua Bai
- National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China.
| |
Collapse
|
11
|
Gao Y, Guo R, Feng Y, Zhang L, Wang C, Song J, Jiao T, Zhou J, Peng Q. Self-Assembled Hydrogels Based on Poly-Cyclodextrin and Poly-Azobenzene Compounds and Applications for Highly Efficient Removal of Bisphenol A and Methylene Blue. ACS OMEGA 2018; 3:11663-11672. [PMID: 31459262 PMCID: PMC6644948 DOI: 10.1021/acsomega.8b01810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/13/2018] [Indexed: 05/29/2023]
Abstract
The excellent physical and chemical properties of cyclodextrin polymer (poly-CD)/azobenzene-modified polyacrylic acid (PAA-Azo) binary composite hydrogels have been designed and prepared. The prepared hydrogels were subjected to a variety of characterizations, including scanning electron microscopy, ultraviolet spectroscopy, circular dichroism spectroscopy, infrared spectroscopy, rheological properties, and specific surface area tests. It was found that the obtained hydrogels have the cross-linked three-dimensional porous network nanostructures, and the formed composite poly-CD/PAA-Azo hydrogel can basically be shear thinned and have good recovery performance. A process of gel-sol transition can occur when the gel has a stimulatory response under UV light irradiation. In addition, such excellent properties of hydrogels exhibit different mechanisms in the adsorption of organic molecules that are harmful to the environment, such as bisphenol A (BPA) and methylene blue (MB). The polymeric hydrogel serves as novel adsorbent agents to adsorb BPA via host-guest interaction and anchor MB via electrostatic interaction and hydrogen bonding.
Collapse
Affiliation(s)
- Yagui Gao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Rong Guo
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Yao Feng
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Lexin Zhang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Cuiru Wang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jingwen Song
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P.
R. China
| | - Jingxin Zhou
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Qiuming Peng
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P.
R. China
| |
Collapse
|