1
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
2
|
Giri R, Zhilin E, Katayev D. Divergent functionalization of alkenes enabled by photoredox activation of CDFA and α-halo carboxylic acids. Chem Sci 2024; 15:10659-10667. [PMID: 38994427 PMCID: PMC11234866 DOI: 10.1039/d4sc01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Herein we present our studies on the solvent-controlled difunctionalization of alkenes utilizing chlorodifluoroacetic acid (CDFA) and α-halo carboxylic acids for the synthesis of γ-lactones, γ-lactams and α,α-difluoroesters. Mechanistic insights revealed that photocatalytic reductive mesolytic cleavage of the C-X bond delivers elusive α-carboxyl alkyl radicals. In the presence of an olefin molecule, this species acts as a unique bifunctional intermediate allowing for stipulated formation of C-O, C-N and C-H bonds on Giese-type adducts via single electron transfer (SET) or hydrogen atom transfer (HAT) events. These protocols exhibit great efficiency across a broad spectrum of readily available α-halo carboxylic acids and are amenable to scalability in both batch and flow. To demonstrate the versatility of this concept, the synthesis of (±)-boivinianin A, its fluorinated analog and eupomatilone-6 natural products was successfully accomplished.
Collapse
Affiliation(s)
- Rahul Giri
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Egor Zhilin
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Dmitry Katayev
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
3
|
Wendlandt HC, Trammel GL, Kohler DG, Utley JA, Nicely AM, Popov AG, Hull KL. Copper-Catalyzed Three-Component Carboiminolactonization of Electron-Deficient Olefins. J Org Chem 2024; 89:2024-2031. [PMID: 38198512 PMCID: PMC10872306 DOI: 10.1021/acs.joc.3c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Herein we report the three-component copper-catalyzed carboiminolactonization of α,β-unsaturated carbonyl derivatives. In the presence of a Cu(I) catalyst, α-haloesters, electron-deficient alkenes, and primary amines couple to generate γ-iminolactones in a single step. The scope of the reaction is explored with respect to the three coupling partners. Nineteen examples are presented with yields of these hydrolytically labile heterocycles of up to 69%. Mechanistic investigations support the formation of an oxocarbenium by way of an atom transfer radical addition (ATRA) intermediate.
Collapse
Affiliation(s)
- Hannah C. Wendlandt
- Department of Chemistry, University of Texas at Austin, 100 East 24 Street, Austin, Texas 78712, United States
| | - Grace L. Trammel
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Daniel G. Kohler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jacob A. Utley
- Department of Chemistry, University of Texas at Austin, 100 East 24 Street, Austin, Texas 78712, United States
| | - Aja M. Nicely
- Department of Chemistry, University of Texas at Austin, 100 East 24 Street, Austin, Texas 78712, United States
| | - Andrei G. Popov
- Department of Chemistry, University of Texas at Austin, 100 East 24 Street, Austin, Texas 78712, United States
| | - Kami L. Hull
- Department of Chemistry, University of Texas at Austin, 100 East 24 Street, Austin, Texas 78712, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Nicely AM, Popov AG, Wendlandt HC, Trammel GL, Kohler DG, Hull KL. Cu-Catalyzed Three-Component Carboamination of Electron Deficient Olefins. Org Lett 2023; 25:5302-5307. [PMID: 37440170 PMCID: PMC10771120 DOI: 10.1021/acs.orglett.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The copper-catalyzed three-component carboamination of atropates for the synthesis of α-aryl amino acid derivatives is presented. The scope of the reaction is explored with respect to all three coupling partners: the alkyl halide, the atropate, and the aryl amine. A total of 41 examples are included, with yields of ≤92%. Both primary and secondary aryl amines participate in the carboamination along with α-haloesters, nitriles, and perfluoroiodoalkanes. Mechanistic investigations support a radical mechanism involving Cu-mediated C-N bond formation with the radical adduct.
Collapse
Affiliation(s)
- Aja M Nicely
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrei G Popov
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hannah C Wendlandt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Grace L Trammel
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61812, United States
| | - Daniel G Kohler
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61812, United States
| | - Kami L Hull
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61812, United States
| |
Collapse
|
5
|
Liu QS, Qiu WJ, Lu WQ, Wang GW. Copper-mediated synthesis of fullerooxazoles from [60]fullerene and N-hydroxybenzimidoyl cyanides. Org Biomol Chem 2022; 20:3535-3539. [PMID: 35388873 DOI: 10.1039/d2ob00239f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel and efficient copper-mediated [3 + 2] heteroannulation reaction of [60]fullerene with N-hydroxybenzimidoyl cyanides has been developed for the synthesis of fullerooxazoles. A possible reaction mechanism involving unique C-CN and N-OH bond cleavages and subsequent C-OH bond formation for N-hydroxybenzimidoyl cyanides is proposed to explain the generation of fullerooxazoles. In addition, the formed fullerooxazoles can be further electrochemically transformed into amidated 1,2-hydrofullerenes.
Collapse
Affiliation(s)
- Qing-Song Liu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Wen-Jie Qiu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Wen-Qiang Lu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Guan-Wu Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
6
|
Nguyen TT, Ngo BHT, Le HX, Vu LNP, To TA, Phan ANQ, Phan NTS. Cobalt-catalyzed annulation of styrenes with α-bromoacetic acids. RSC Adv 2021; 11:5451-5455. [PMID: 35423092 PMCID: PMC8694682 DOI: 10.1039/d0ra09588e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/23/2021] [Indexed: 11/21/2022] Open
Abstract
We report a method for addition of α-bromophenylacetic acids to vinyl C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bonds in styrenes to afford γ-lactones. Reactions employed a simple cobalt catalyst Co(NO3)2·6H2O in the presence of dipivaloylmethane (dpm) ligand. Many functionalities including halogen, ester, and nitro groups were compatible with reaction conditions. If α-bromoesters were used, vinylacetates were the major products. Cobalt-catalyzed addition of α-bromoacetic acids/acetates to CC bonds in styrenes is reported for the first time. Good tolerance of functional groups was observed.![]()
Collapse
Affiliation(s)
- Tung T. Nguyen
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Bao H. T. Ngo
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Huy X. Le
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Linh N. P. Vu
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Tuong A. To
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Anh N. Q. Phan
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Nam T. S. Phan
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| |
Collapse
|
7
|
Wu F, Xie J, Zhu Z. 1,10‐Phenanthroline: A versatile ligand to promote copper‐catalyzed cascade reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Fengtian Wu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 China
| | - Jianwei Xie
- College of Chemistry and Bioengineering Hunan University of Science and Engineering Yongzhou 425199 China
| | - Zhiqiang Zhu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 China
| |
Collapse
|
8
|
Sahharova LT, Gordeev EG, Eremin DB, Ananikov VP. Pd-Catalyzed Synthesis of Densely Functionalized Cyclopropyl Vinyl Sulfides Reveals the Origin of High Selectivity in a Fundamental Alkyne Insertion Step. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liliya T. Sahharova
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Evgeniy G. Gordeev
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Dmitry B. Eremin
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
- The Bridge@USC, University of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States
| | - Valentine P. Ananikov
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
9
|
Song RJ, Wei B, Li KW, Wu YC, Tong SQ. Radical Strategy for the Transition-Metal-Catalyzed Synthesis of γ-Lactones: A Review. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The γ-lactone skeleton is very important component of various natural products, biological molecules, food additives, and perfumes. As a result, much effort has been made towards such compounds. In this review, we summarize recent progress in transition-metal-catalyzed annulation reactions for the formation of γ-lactone derivatives through a radical pathway. Various reagents, such as anhydrides, Togni’s reagent, TMSN3, arenesulfonyl chlorides, arenediazonium salts, dibenzoyl peroxides, O-benzoylhydroxylamine, NFSI, and α-halocarboxylic compounds, used in radical cyclization reactions are described, and the mechanisms of these radical annulation reactions are also discussed.1 Introduction2 Annulations of Alkenes with Anhydrides3 Annulations of Unsaturated Carboxylic Acids with Nucleophiles4 Annulations of Alkenes with α-Halocarboxylic Compounds5 Conclusions and Outlook
Collapse
Affiliation(s)
- Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University
| | | | | | | | | |
Collapse
|
10
|
Fantinati A, Zanirato V, Marchetti P, Trapella C. The Fascinating Chemistry of α-Haloamides. ChemistryOpen 2020; 9:100-170. [PMID: 32025460 PMCID: PMC6996577 DOI: 10.1002/open.201900220] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this review is to highlight the rich chemistry of α-haloamides originally mainly used to discover new C-N, C-O and C-S bond forming reactions, and later widely employed in C-C cross-coupling reactions with C(sp3), C(sp2) and C(sp) coupling partners. Radical-mediated transformations of α-haloamides bearing a suitable located unsaturated bond has proven to be a straightforward alternative to access diverse cyclic compounds by means of either radical initiators, transition metal redox catalysis or visible light photoredox catalysis. On the other hand, cycloadditions with α-halohydroxamate-based azaoxyallyl cations have garnered significant attention. Moreover, in view of the important role in life and materials science of difluoroalkylated compounds, a wide range of catalysts has been developed for the efficient incorporation of difluoroacetamido moieties into activated as well as unactivated substrates.
Collapse
Affiliation(s)
- Anna Fantinati
- Department of Chemical and Pharmaceutical SciencesUniversity of Ferrara, Via Fossato di Mortara 1744121FerraraItaly E-mail: V. Zanirato
| | - Vinicio Zanirato
- Department of Chemical and Pharmaceutical SciencesUniversity of Ferrara, Via Fossato di Mortara 1744121FerraraItaly E-mail: V. Zanirato
| | - Paolo Marchetti
- Department of Chemical and Pharmaceutical SciencesUniversity of Ferrara, Via Fossato di Mortara 1744121FerraraItaly E-mail: V. Zanirato
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical SciencesUniversity of Ferrara, Via Fossato di Mortara 1744121FerraraItaly E-mail: V. Zanirato
| |
Collapse
|
11
|
Maximiano AP, Sá MM. Stereoselective Synthesis of Cyclopropylidene Iminolactones and Functionalized Cyclopropanecarboxamides Mediated by Triflic Acid. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Adrielle P. Maximiano
- Departamento de Química; Universidade Federal de Santa Catarina; SC 88040-900 Florianópolis Brazil
| | - Marcus M. Sá
- Departamento de Química; Universidade Federal de Santa Catarina; SC 88040-900 Florianópolis Brazil
| |
Collapse
|
12
|
Lv Y, Pu W, Shi L. Copper-Catalyzed Regio- and Stereoselective 1,1-Dicarbofunctionalization of Terminal Alkynes. Org Lett 2019; 21:6034-6039. [DOI: 10.1021/acs.orglett.9b02190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
- Jilin Provincial Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun, Jilin 130024, China
| | - Weiya Pu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Lihan Shi
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| |
Collapse
|
13
|
Hemric BN, Chen AW, Wang Q. Copper-Catalyzed Modular Amino Oxygenation of Alkenes: Access to Diverse 1,2-Amino Oxygen-Containing Skeletons. J Org Chem 2019; 84:1468-1488. [PMID: 30588808 DOI: 10.1021/acs.joc.8b02885] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper-catalyzed alkene amino oxygenation reactions using O-acylhydroxylamines have been achieved for a rapid and modular access to diverse 1,2-amino oxygen-containing molecules. This transformation is applicable to the use of alcohols, carbonyls, oximes, and thio-carboxylic acids as nucleophiles on both terminal and internal alkenes. Mild reaction conditions tolerate a wide range of functional groups, including ether, ester, amide, carbamate, and halide. The reaction protocol allows for starting with free amines as the precursor of O-benzoylhydroxylamines to eliminate their isolation and purification, contributing to broader synthetic utilities. Mechanistic investigations reveal the amino oxygenation reactions may involve distinct pathways, depending on different oxygen nucleophiles.
Collapse
Affiliation(s)
- Brett N Hemric
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Andy W Chen
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Qiu Wang
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
14
|
Pu W, Sun D, Fan W, Pan W, Chai Q, Wang X, Lv Y. Cu-Catalyzed atom transfer radical addition reactions of alkenes with α-bromoacetonitrile. Chem Commun (Camb) 2019; 55:4821-4824. [PMID: 30946406 DOI: 10.1039/c9cc01988j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A practical, simple, and efficient copper-catalyzed atom transfer radical addition reaction of alkenes with α-bromoacetonitrile is realized. With this methodology, various γ-bromonitriles and β,γ-unsaturated nitriles were efficiently constructed.
Collapse
Affiliation(s)
- Weiya Pu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Dong YX, Li Y, Gu CC, Jiang SS, Song RJ, Li JH. Copper-Catalyzed Three-Components Intermolecular Alkylesterification of Styrenes with Toluenes and Peroxyesters or Acids. Org Lett 2018; 20:7594-7597. [DOI: 10.1021/acs.orglett.8b03330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ying-Xia Dong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Chang-Cheng Gu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Shuai-Shuai Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Iwasaki M, Miki N, Ikemoto Y, Ura Y, Nishihara Y. Regioselective Synthesis of γ-Lactones by Iron-Catalyzed Radical Annulation of Alkenes with α-Halocarboxylic Acids and Their Derivatives. Org Lett 2018; 20:3848-3852. [PMID: 29889542 DOI: 10.1021/acs.orglett.8b01436] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An abundant and low toxicity iron catalyst has enabled regioselective annulation of alkenes with α-halocarboxylic acids and their derivatives. The reaction proceeds smoothly without any additional ligands, bases, and additives to afford a variety of γ-lactones in good yields. A proposed reaction pathway through radical annulation is supported by some mechanistic studies, involving radical clock and isotope labeling experiments. The present method was applied to the practical iron-powder-promoted synthesis of γ-lactones.
Collapse
Affiliation(s)
- Masayuki Iwasaki
- Research Institute for Interdisciplinary Science , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| | - Natsumi Miki
- Research Institute for Interdisciplinary Science , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| | - Yuichi Ikemoto
- Research Institute for Interdisciplinary Science , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| | - Yasuyuki Ura
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science , Nara Women's University , Kitauoyanishi-machi, Nara 630-8506 , Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| |
Collapse
|
17
|
Lv Y, Pu W, Zhu X, Zhao T, Lin F. Copper-Catalyzed Cross-Coupling of Secondary α-Haloamides with Terminal Alkynes: Access to Diverse 2,3-Allenamides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials; Anyang 455000 People's Republic of China
| | - Weiya Pu
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| | - Xueli Zhu
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| | - Tiantian Zhao
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| | - Feifei Lin
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| |
Collapse
|