1
|
Weng Z, Yu H, Luo W, Zhang L, Zhang Z, Wang T, Liu Q, Guo Y, Yang Y, Li J, Yang L, Dai L, Pu Q, Zhou X, Xie G. Specific and robust hybridization based on double-stranded nucleic acids with single-base resolution. Anal Chim Acta 2022; 1199:339568. [DOI: 10.1016/j.aca.2022.339568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
|
2
|
Zhang L, Chen J, He M, Su X. Molecular dynamics simulation-guided toehold mediated strand displacement probe for single-nucleotide variants detection. EXPLORATION (BEIJING, CHINA) 2022; 2:20210265. [PMID: 37324584 PMCID: PMC10190925 DOI: 10.1002/exp.20210265] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 06/16/2023]
Abstract
Single nucleotide variant (SNV) has become an emerging biomarker for various diseases such as cancers and infectious diseases. Toehold-mediated strand displacement (TMSD), the core reaction of DNA nanotechnology, has been widely leveraged to identify SNVs. However, inappropriate choice of mismatch location results in poor discrimination ability. Here, we comprehensively investigate the effect of mismatch location on TMSD kinetics by molecular dynamic simulation tool oxDNA through umbrella sampling and forward flux sampling disclosing that mismatches at the border of the toehold and branch migration domain yield the lowest TMSD reaction rate. Nine disease-related SNVs (SARS-CoV-2-D614G, EGFR-L858R, EGFR-T790M, KRAS-G12R, etc.) were tested experimentally showing a good agreement with simulation. The best choice of mismatch location enables high discrimination factor with a median of 124 for SNV and wild type. Coupling with a probe-sink system, a low variant allele frequency of 0.1% was detected with 3 S/N. We successfully used the probes to detect SNVs with high confidence in the PCR clones of constructed plasmids. This work provides mechanistic insights into TMSD process at the single-nucleotide level and can be a guidance for the design of TMSD system with fine-tuning kinetics for various applications in biosensors and nanotechnology.
Collapse
Affiliation(s)
- Linghao Zhang
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Jing Chen
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Mengya He
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Xin Su
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
3
|
Zhang Z, Yao J, Huang X, Zhang L, Wang T, Weng Z, Xie G. Multiplex real-time PCR using double-strand primers and probes for the detection of nucleic acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5392-5396. [PMID: 33111715 DOI: 10.1039/d0ay01661f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiplex PCR encounters difficulties in primer designing with all the primer pairs working at the same annealing temperature. In this study, we have developed a double-strand primer-mediated multiple strand displacement reaction for the detection of SARS-COV-2 ORF, N and E genes (as examples). The double primer is composed of a 5'-modified fluorophore strand, which does not impact polymerase extension and a 3'-modified quencher strand, which cannot impact elongation. At the annealing temperature, the fluorophore strand combined with the template, extended and resulted in fluorescence signal release. Results showed that the double-strand primer relatively exhibits a wide annealing temperature range and good compatibility between three pairs of primers and probes. These merits allow the simple and multiplex real-time fluorescence quantification of nucleic acids. The detection limit was 400 copies/mL, and the detection time was approximately 2 h. In addition to its extreme specificity and simplicity, this method has a wide range of applications such as multiple PCR and SNP detection.
Collapse
Affiliation(s)
- Zhang Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | | | | | | | | | | | | |
Collapse
|
4
|
McNamara SL, Brudno Y, Miller AB, Ham HO, Aizenberg M, Chaikof EL, Mooney DJ. Regenerating Antithrombotic Surfaces through Nucleic Acid Displacement. ACS Biomater Sci Eng 2020; 6:2159-2166. [PMID: 33455325 DOI: 10.1021/acsbiomaterials.0c00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood-contacting devices are commonly coated with antithrombotic agents to prevent clot formation and to extend the lifespan of the device. However, in vivo degradation of these bioactive surface agents ultimately limits device efficacy and longevity. Here, a regenerative antithrombotic catheter surface treatment is developed using oligodeoxynucleotide (ODN) toehold exchange. ODN strands modified to carry antithrombotic payloads can inhibit the thrombin enzyme when bound to a surface and exchange with rapid kinetics over multiple cycles, even while carrying large payloads. The surface-bound ODNs inhibit thrombin activity to significantly reduce fibrinogen cleavage and fibrin formation, and this effect is sustained after ODN exchange of the surface-bound strands with a fresh antithrombotic payload. This study presents a unique strategy for achieving a continuous antithrombotic state for blood-contacting devices using an ODN-based regeneration method.
Collapse
Affiliation(s)
- Stephanie L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States.,Harvard-MIT Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts 02215, United States
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, 911 Oval Drive, Raleigh, North Carolina 27695, United States.,Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts 02215, United States
| | - Alex B Miller
- Harvard-MIT Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02138, United States
| | - Hyun Oki Ham
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts 02215, United States.,Department of Surgery, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Michael Aizenberg
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts 02215, United States
| | - Elliot L Chaikof
- Harvard-MIT Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts 02215, United States.,Department of Surgery, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Yu W, Li J, Zuo C, Tao Y, Bai S, Li J, Zhang Z, Xie G. Specific discrimination and universal signal amplification for RNA detection by coupling toehold exchange with RCA through nucleolytic conversion of a structure-switched hairpin probe. Anal Chim Acta 2019; 1068:96-103. [PMID: 31072482 DOI: 10.1016/j.aca.2019.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/27/2022]
Abstract
Herein, we combined toehold exchange with ligation-free rolling circle amplification (RCA) by programming nucleolytic conversion of hairpin probe into sensors, allowed for both high specific recognition and universal signal amplification for RNA detection. The rational engineered HP ensured highly specific recognition based on toehold exchange and allowed the pre-formed circular template for RCA to be shared for different RNAs detection. Generally, detecting different RNA requires different circular template for signal amplification. In this paper, the circular template for RCA was independent of the sequences of the target, so the signal amplification system was an universal one for different RNAs detection. Taking miRNA let-7d as a model target, this method showed a wide linear range from 1 fM to 1 nM with a detection limit of 0.46 fM and exhibited a remarkable selectivity even in distinguishing homologous miRNAs with 1-nt or 2-nt difference. To evaluate the potential of the method, it was applied to analysis the let-7d concentration in human serum, total RNA, and cell lysates. In conclusion, we believe this method exhibits potential for both specific discrimination and universal signal amplification for RNA analysis in complex matrices.
Collapse
Affiliation(s)
- Wen Yu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Juqiong Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Chen Zuo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yiyi Tao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shulian Bai
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junlong Li
- Department of Laboratory Medicine, The Affiliated University City Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhang Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|