1
|
Mombeshora ET, Muchuweni E, Garcia-Rodriguez R, Davies ML, Nyamori VO, Martincigh BS. A review of graphene derivative enhancers for perovskite solar cells. NANOSCALE ADVANCES 2022; 4:2057-2076. [PMID: 36133440 PMCID: PMC9418678 DOI: 10.1039/d1na00830g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/20/2022] [Indexed: 05/22/2023]
Abstract
Due to the finite nature, health and environmental hazards currently associated with the use of fossil energy resources, there is a global drive to hasten the development and deployment of renewable energy technologies. One such area encompasses perovskite solar cells (PSCs) that have shown photoconversion efficiencies (PCE) comparable to silicon-based photovoltaics, but their commercialisation has been set back by short-term stability and toxicity issues, among others. A tremendous potential to overcome these drawbacks is presented by the emerging applications of graphene derivative-based materials in PSCs as substitutes or components, composites with other functional materials, and enhancers of charge transport, blocking action, exciton dissociation, substrate coverage, sensitisation and stabilisation. This review aims to illustrate how these highly capable carbon-based materials can advance PSCs by critically outlining and discussing their current applications and strategically identifying prospective research avenues. The reviewed works show that graphene derivatives have great potential in boosting the performance and stability of PSCs through morphological modifications and compositional engineering. This can drive the sustainability and commercial viability aspects of PSCs.
Collapse
Affiliation(s)
- Edwin T Mombeshora
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| | - Edigar Muchuweni
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| | - Rodrigo Garcia-Rodriguez
- SPECIFIC IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University Swansea UK
| | - Matthew L Davies
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
- SPECIFIC IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University Swansea UK
| | - Vincent O Nyamori
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
2
|
Li Q, Zhang Y, Wu Z, Wang T, Qiu J, Song Z, Li Y. Enhancement of green upconversion luminescence of Yb3+/Tb3+ co-doped BiOBr nanosheets and its potential applications in photocatalysis. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Recent Advances and Challenges in Halide Perovskite Crystals in Optoelectronic Devices from Solar Cells to Other Applications. CRYSTALS 2020. [DOI: 10.3390/cryst11010039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organic-inorganic hybrid perovskite materials have attracted tremendous attention as a key material in various optoelectronic devices. Distinctive optoelectronic properties, such as a tunable energy band position, long carrier diffusion lengths, and high charge carrier mobility, have allowed rapid progress in various perovskite-based optoelectronic devices (solar cells, photodetectors, light emitting diodes (LEDs), and lasers). Interestingly, the developments of each field are based on different characteristics of perovskite materials which are suitable for their own applications. In this review, we provide the fundamental properties of perovskite materials and categorize the usages in various optoelectronic applications. In addition, the prerequisite factors for those applications are suggested to understand the recent progress of perovskite-based optoelectronic devices and the challenges that need to be solved for commercialization.
Collapse
|
4
|
Han W, Ren G, Liu J, Li Z, Bao H, Liu C, Guo W. Recent Progress of Inverted Perovskite Solar Cells with a Modified PEDOT:PSS Hole Transport Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49297-49322. [PMID: 33089987 DOI: 10.1021/acsami.0c13576] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic-inorganic hybrid perovskite solar cells (PSCs) has achieved the power conversion efficiency (PCE) of 25.2% in the last 10 years, and the PCE of inverted PSCs has reached >22%. The rapid enhancement has partly benefited from the employment of suitable hole transport layers. Especially, poly(3,4-ethenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most widely used polymer hole transport materials in inverted PSCs, because of its high optical transparency in the visible region and low-temperature processing condition. However, the PCE and stability of PSCs based on pristine PEDOT:PSS are far from satisfactory, which are ascribed to low fitness between PEDOT:PSS and perovskite materials, in terms of work function, conductivity, film growth, and hydrophobicity. This paper summaries recent progress regarding to modifying/remedy the drawbacks of PEDOT:PSS to improve the PCE and stability. The systematically understanding of the mechanism of modified PEDOT:PSS and various characteristic methods are summarized here. This Review has the potential to guide the development of PSCs based on commercial PEDOT:PSS.
Collapse
Affiliation(s)
- Wenbin Han
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Guanhua Ren
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Jiuming Liu
- School of Information Science and Technology, Shanghai Technology University, Shanghai, 201210, China
| | - Zhiqi Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Hongchang Bao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Chunyu Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
- College of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Wenbin Guo
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| |
Collapse
|
5
|
Matebese F, Taziwa R, Mutukwa D. Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. MATERIALS 2018; 11:ma11122592. [PMID: 30572658 PMCID: PMC6316768 DOI: 10.3390/ma11122592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 11/16/2022]
Abstract
P-type wide bandgap semiconductor materials such as CuI, NiO, Cu2O and CuSCN are currently undergoing intense research as viable alternative hole transport materials (HTMs) to the spiro-OMeTAD in perovskite solar cells (PSCs). Despite 23.3% efficiency of PSCs, there are still a number of issues in addition to the toxicology of Pb such as instability and high-cost of the current HTM that needs to be urgently addressed. To that end, copper thiocyanate (CuSCN) HTMs in addition to robustness have high stability, high hole mobility, and suitable energy levels as compared to spiro-OMeTAD HTM. CuSCN HTM layer use affordable materials, require short synthesis routes, require simple synthetic techniques such as spin-coating and doctor-blading, thus offer a viable way of developing cost-effective PSCs. HTMs play a vital role in PSCs as they can enhance the performance of a device by reducing charge recombination processes. In this review paper, we report on the current progress of CuSCN HTMs that have been reported to date in PSCs. CuSCN HTMs have shown enhanced stability when exposed to weather elements as the solar devices retained their initial efficiency by a greater percentage. The efficiency reported to date is greater than 20% and has a potential of increasing, as well as maintaining thermal stability.
Collapse
Affiliation(s)
- Funeka Matebese
- Fort Hare Institute of Technology, University of Fort Hare, Alice 5700, South Africa.
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa.
| | - Raymond Taziwa
- Fort Hare Institute of Technology, University of Fort Hare, Alice 5700, South Africa.
| | - Dorcas Mutukwa
- Fort Hare Institute of Technology, University of Fort Hare, Alice 5700, South Africa.
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa.
| |
Collapse
|