1
|
Al-Sodies S, Asiri AM, Alam MM, Alamry KA, Rahman MM, Hussein MA. Development of an efficient electrochemical sensing platform based on ter-poly(luminol- o-anisidine- o-toluidine)/ZnO/GNPs nanocomposites for the detection of antimony (Sb 3+) ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4333-4346. [PMID: 38888440 DOI: 10.1039/d4ay00472h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
A poly(luminol-o-anisidine-o-toluidine) terpolymer was synthesized, characterized, and modified with GNPs and ZnO NPs. The nanocomposites were then examined for their electroactivity and potential use as cationic electrochemical sensors for detecting Sb3+ ions in phosphate buffer on the surface of a glassy carbon electrode (GCE). Among the different compositions and the terpolymer, the GCE adapted with the PLAT/ZnO/GNPs-5% nanocomposite displayed the highest current response. The fabricated nanocomposite sensor exhibited high sensitivity, with a value of 21.4177 μA μM-1 cm-2, and a low detection limit of 95.42 pM. The analytical performance of the sensor was evaluated over the linear dynamic range (LDR) of 0.1 nM to 0.01 mM. The proposed sensor is effective in detecting and measuring carcinogenic Sb3+ ions in real environmental samples using an electrochemical approach, making it a promising tool for environmental monitoring.
Collapse
Affiliation(s)
- Salsabeel Al-Sodies
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - M M Alam
- Department of Chemical Engineering, Z. H. Sikder University of Science and Technology (ZHSUST), Shariatpur-8024, Bangladesh
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Mohammed M Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| |
Collapse
|
2
|
Alebachew N, Murthy HCA, Gonfa BA, von Eschwege KG, Langner EHG, Coetsee E, Demissie TB. Nanocomposites with ZrO 2@S-Doped g-C 3N 4 as an Enhanced Binder-Free Sensor: Synthesis and Characterization. ACS OMEGA 2023; 8:13775-13790. [PMID: 37091396 PMCID: PMC10116625 DOI: 10.1021/acsomega.2c08174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
This study describes new electrocatalyst materials that can detect and reduce environmental pollutants. The synthesis and characterization of semiconductor nanocomposites (NCs) made from active ZrO2@S-doped g-C3N4 is presented. Electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) measurements were used to examine electron transfer characteristics of the synthesized samples. Using X-ray diffraction (XRD) and high-resolution scanning electron microscopy (HR-SEM) techniques, inclusion of monoclinic ZrO2 on flower-shaped S-doped-g-C3N4 was visualized. High-resolution X-ray photoelectron spectroscopy (XPS) revealed successful doping of ZrO2 into the lattice of S-doped g-C3N4. The electron transport mechanism between the electrolyte and the fluorine tin-oxide electrode (FTOE) was enhanced by the synergistic interaction between ZrO2 and S-doped g-C3N4 as co-modifiers. Development of a platform with improved conductivity based on an FTOE modified with ZrO2@S-doped g-C3N4 NCs resulted in an ideal platform for the detection of 4-nitrophenol (4-NP) in water. The electrocatalytic activity of the modified electrode was evaluated through determination of 4-NP by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) under optimum conditions (pH 5). ZrO2@S-doped g-C3N4 (20%)/FTOE exhibited good electrocatalytic activity with a linear range from 10 to 100 μM and a low limit of detection (LOD) of 6.65 μM. Typical p-type semiconductor ZrO2@S-doped g-C3N4 NCs significantly impact the superior detection of 4-NP due to its size, shape, optical properties, specific surface area and effective separation of electron-hole pairs. We conclude that the superior electrochemical sensor behavior of the ZrO2@S-doped g-C3N4 (20%)/FTOE surfaces results from the synergistic interaction between S-doped g-C3N4 and ZrO2 surfaces that produce an active NC interface.
Collapse
Affiliation(s)
- Nigussie Alebachew
- Department
of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama 251, Ethiopia
| | - H. C. Ananda Murthy
- Department
of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama 251, Ethiopia
- Department
of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Science
(SIMATS), Saveetha University, Chennai 600077, Tamil
Nadu, India
| | - Bedasa Abdisa Gonfa
- Department
of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama 251, Ethiopia
| | - Karel G. von Eschwege
- Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Ernst H. G. Langner
- Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Elizabeth Coetsee
- Department
of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9310, South Africa
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, P.bag UB 00704 Gaborone, Botswana
| |
Collapse
|
3
|
Faisal M, Alam MM, Ahmed J, Asiri AM, Jalalah M, Alruwais RS, Rahman MM, Harraz FA. Sensitive Electrochemical Detection of 4-Nitrophenol with PEDOT:PSS Modified Pt NPs-Embedded PPy-CB@ZnO Nanocomposites. BIOSENSORS 2022; 12:bios12110990. [PMID: 36354499 PMCID: PMC9688362 DOI: 10.3390/bios12110990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 05/09/2023]
Abstract
In this study, a selective 4-nitrophenol (4-NP) sensor was developed onto a glassy carbon electrode (GCE) as an electron-sensing substrate, which decorated with sol-gel, prepared Pt nanoparticles- (NPs) embedded polypyrole-carbon black (PPy-CB)/ZnO nanocomposites (NCs) using differential pulse voltammetry. Characterizations of the NCs were performed using Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Ultraviolet-visible Spectroscopy (UV-vis), Fourier Transform Infrared Spectroscopy (FTIR), High Resolution Transmission Electron Microscopy (HRTEM), and X-ray Diffraction Analysis (XRD). The GCE modified by conducting coating binders [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS] based on Pt NPs/PPy-CB/ZnO NCs functioned as the working electrode and showed selectivity toward 4-NP in a phosphate buffer medium at pH 7.0. Our analysis of 4-NP showed the linearity from 1.5 to 40.5 µM, which was identified as the linear detection range (LDR). A current versus concentration plot was formed and showed a regression co-efficient R2 of 0.9917, which can be expressed by ip(µA) = 0.2493C(µM) + 15.694. The 4-NP sensor sensitivity was calculated using the slope of the LDR, considering the surface area of the GCE (0.0316 cm2). The sensitivity was calculated as 7.8892 µAµM-1cm-2. The LOD (limit of detection) of the 4-NP was calculated as 1.25 ± 0.06 µM, which was calculated from 3xSD/σ (SD: Standard deviation of blank response; σ: Slope of the calibration curve). Limit of quantification (LOQ) is also calculated as 3.79 µM from LOQ = 10xLOD/3.3. Sensor parameters such as reproducibility, response time, and analyzing stability were outstanding. Therefore, this novel approach can be broadly used to safely fabricate selective 4-NP sensors based on nanoparticle-decorated nanocomposite materials in environmental measurement.
Collapse
Affiliation(s)
- Mohd Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Md. Mahmud Alam
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jahir Ahmed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Raja Saad Alruwais
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi 17472, Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.M.R.); (F.A.H.)
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
- Correspondence: (M.M.R.); (F.A.H.)
| |
Collapse
|
4
|
Faisal M, Alam MM, Ahmed J, Asiri AM, Alsaiari M, Alruwais RS, Madkhali O, Rahman MM, Harraz FA. Efficient Detection of 2,6-Dinitrophenol with Silver Nanoparticle-Decorated Chitosan/SrSnO 3 Nanocomposites by Differential Pulse Voltammetry. BIOSENSORS 2022; 12:bios12110976. [PMID: 36354485 PMCID: PMC9688669 DOI: 10.3390/bios12110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/03/2023]
Abstract
Herein, an ultra-sonication technique followed by a photoreduction technique was implemented to prepare silver nanoparticle-decorated Chitosan/SrSnO3 nanocomposites (Ag-decorated Chitosan/SrSnO3 NCs), and they were successively used as electron-sensing substrates coated on a glassy carbon electrode (GCE) for the development of a 2,6-dinitrophenol (2,6-DNP) efficient electrochemical sensor. The synthesized NCs were characterized in terms of morphology, surface composition, and optical properties using FESEM, TEM, HRTEM, BET, XRD, XPS, FTIR, and UV-vis analysis. Ag-decorated Chitosan/SrSnO3 NC/GCE fabricated with the conducting binder (PEDOT:PSS) was found to analyze 2,6-DNP in a wide detection range (LDR) of 1.5~13.5 µM by applying the differential pulse voltammetry (DPV) approach. The 2,6-DNP sensor parameters, such as sensitivity (54.032 µA µM-1 cm-2), limit of detection (LOD; 0.18 ± 0.01 µM), limit of quantification (LOQ; 0.545 µM) reproducibility, and response time, were found excellent and good results. Additionally, various environmental samples were analyzed and obtained reliable analytical results. Thus, it is the simplest way to develop a sensor probe with newly developed nanocomposite materials for analyzing the carcinogenic contaminants from the environmental effluents by electrochemical approach for the safety of environmental and healthcare fields in a broad scale.
Collapse
Affiliation(s)
- M. Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - M. M. Alam
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdelaziz University, Jeddah 21589, Saudi Arabia
| | - Jahir Ahmed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdelaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
| | - Raja Saad Alruwais
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi 17472, Saudi Arabia
| | - O. Madkhali
- Department of Physics, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdelaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.M.R.); (F.A.H.)
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
- Correspondence: (M.M.R.); (F.A.H.)
| |
Collapse
|
5
|
Albaqami MD, Medany SS, Nafady A, Ibupoto MH, Willander M, Tahira A, Aftab U, Vigolo B, Ibupoto ZH. The fast nucleation/growth of Co 3O 4 nanowires on cotton silk: the facile development of a potentiometric uric acid biosensor. RSC Adv 2022; 12:18321-18332. [PMID: 35799920 PMCID: PMC9215123 DOI: 10.1039/d2ra03149c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 01/21/2023] Open
Abstract
In this study, we have used cotton silk as a source of abundant hydroxyl groups for the fast nucleation/growth of cobalt oxide (Co3O4) nanowires via a hydrothermal method. The crystal planes of the Co3O4 nanowires well matched the cubic phase. The as-synthesized Co3O4 nanowires mainly contained cobalt and oxygen elements and were found to be highly sensitive towards uric acid in 0.01 M phosphate buffer solution at pH 7.4. Importantly, the Co3O4 nanowires exhibited a large surface area, which was heavily utilized during the immobilization of the enzyme uricase via a physical adsorption method. The potentiometric response of the uricase-immobilizing Co3O4 nanowires was measured in the presence of uric acid (UA) against a silver/silver chloride (Ag/AgCl) reference electrode. The newly fabricated uric acid biosensor possessed a low limit of detection of 1.0 ± 0.2 nM with a wide linear range of 5 nM to 10 mM and sensitivity of 30.6 mV dec-1. Additionally, several related parameters of the developed uric acid biosensor were investigated, such as the repeatability, reproducibility, storage stability, selectivity, and dynamic response time, and these were found to be satisfactory. The good performance of the Co3O4 nanowires was verified based on the fast charge-transfer kinetics, as confirmed via electrochemical impedance spectroscopy. The successful practical use of the uric acid biosensor was demonstrated based on the recovery method. The observed performance of the uricase-immobilizing Co3O4 nanowires revealed that they could be considered as a promising and alternative tool for the detection of uric acid under both in vitro and in vivo conditions. Also, the use of cotton silk as a source of abundant hydroxyl groups may be considered for the remarkably fast nucleation/growth of other metal-oxide nanostructures, thereby facilitating the fabrication of functional electrochemical devices, such as batteries, water-splitting devices, and supercapacitors.
Collapse
Affiliation(s)
- Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Shymaa S Medany
- Department of Chemistry, Faculty of Science, Cairo University Cairo Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | | | - Magnus Willander
- Department of Science and Technology, Campus Norrköping, Linköping University SE-60174 Norrköping Sweden
| | - Aneela Tahira
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Sindh Pakistan
| | | | - Zafar Hussain Ibupoto
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| |
Collapse
|
6
|
Polyvinylpyrrolidone and graphene-modified hematite nanoparticles for efficient electrocatalytic oxidation of p-nitrophenol. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05146-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Dighole RP, Munde AV, Mulik BB, Zade SS, Sathe BR. Melamine functionalised multiwalled carbon nanotubes (M-MWCNTs) as a metal-free electrocatalyst for simultaneous determination of 4-nitrophenol and nitrofurantoin. NEW J CHEM 2022. [DOI: 10.1039/d2nj03901j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An innovative melamine functionalised multiwalled carbon nanotube (M-MWCNTs) based electrochemical sensor has been developed for the determination of environmental nitro-aromatic pollutants, such as 4-nitrophenol (4-NP) and nitrofurantoin (NFT).
Collapse
Affiliation(s)
- Raviraj P. Dighole
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
- Arts, Science & Commerce College, Badnapur 431202, India
| | - Ajay V. Munde
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Balaji B. Mulik
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
| | - Sanjio S. Zade
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Bhaskar R. Sathe
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
| |
Collapse
|
8
|
Rahman MM, Alam MM, Asiri AM, Uddin J. Assessment of Melamine in Different Water Samples with ZnO-doped Co 3 O 4 Nanoparticles on a Glassy Carbon Electrode by Differential Pulse Voltammetry. Chem Asian J 2021; 16:1820-1831. [PMID: 34014032 DOI: 10.1002/asia.202100370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Indexed: 11/07/2022]
Abstract
In this investigation, a melamine electrochemical sensor has been developed by using wet-chemically synthesized low-dimensional aggregated nanoparticles (NPs) of ZnO-doped Co3 O4 as sensing substrate that were decorated onto flat glassy carbon electrode (GCE). The characterization of NPs such as UV-Vis, FTIR, XRD, XPS, EDS, and FESEM was done for detailed investigations in optical, functional, structural, elemental, and morphological analyses. The ZnO-doped Co3 O4 NPs decorated GCE was used as a sensing probe to analyze the target chemical melamine in a phosphate buffer at pH 5.7 by applying differential pulse voltammetry (DPV). It exhibited good performances in terms of sensor analytical parameters such as large linear dynamic range (LDR; 0.15-1.35 mM) of melamine detection, high sensitivity (80.6 μA mM-1 cm-2 ), low limit of detection (LOD; 0.118±0.005 mM), low limit of quantification (LOQ; 0.393 mM), and fast response time (30 s). Besides this, the good reproducibility (in several hours) and repeatability were investigated under identical conditions. Moreover, it was implemented to measure the long-time stability, electron mobility, less charge-transfer resistance, and analyzed diffusion-controlled process for the oxidation reaction of the NPs assembled working GCE electrode, which showed outstanding chemical sensor performances. For validation, real environmental samples were collected from various water sources and investigated successfully with regard to the reliability of the selective melamine detection with prepared NPs coated sensor probe. Therefore, this approach might be introduced as an alternative route in the sensor technology to detect selectively unsafe chemicals by an electrochemical method with nanostructure-doped materials for the safety of environmental, ecological, healthcare fields in a broad scale.
Collapse
Affiliation(s)
- Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - M M Alam
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, MD 21216, USA
| |
Collapse
|
9
|
Alam MM, Asiri AM, Rahman MM. Electrochemical Detection of 2-Nitrophenol Using a Glassy Carbon Electrode Modified with BaO Nanorods. Chem Asian J 2021; 16:1475-1485. [PMID: 33847437 DOI: 10.1002/asia.202100250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Indexed: 01/10/2023]
Abstract
Here, an electrochemical detection approach (differential pulse voltammetry) was employed to develop a 2-nitrophenol (2-NP) sensor probe using a glassy carbon electrode (GCE) coated by wet-chemically synthesized nanorods (NRs) of BaO. The prepared BaO NRs were characterized by field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (XRD) analysis. The peak currents by differential pulse voltammetric (DPV) analysis of 2-NP are plotted against the concentration to obtain the calibration curve of the 2-NP detection. It was found to be linear from 1.5 to 9.0 μM, defined as the dynamic range (LDR) for 2-NP detection in phosphate buffer solution. The sensor sensitivity was calculated from the slope of LDR by considering the active surface area of NRs coated on GCE (0.0316 cm2 ) and found as 17.6 μAμM-1 cm-2 . The limit of detection (LOD) was calculated as 0.50±0.025 μM from the signal/noise (S/N) ratio of 3. Moreover, the sensor analytical parameters such as reproducibility, long-term performing ability (stability), response time and validity in real environmental samples were found acceptable and to give satisfactory results. The development of a nanomaterial-based electrochemical chemical sensor might be an effective approach to sensor technology to detect carcinogenic and hazardous toxins for environmental safety and healthcare fields in a broad scale.
Collapse
Affiliation(s)
- M M Alam
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia.,Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia.,Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| |
Collapse
|
10
|
Wet-chemically synthesis of SnO2-doped Ag2O nanostructured materials for sensitive detection of choline by an alternative electrochemical approach. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Subhan MA, Saha PC, Akand MAR, Asiri AM, Al‐Mamun M, Rahman MM. Highly sensitive and efficient hydrazine sensor probe development based on MoO
3
/CuO/ZnO ternary mixed metal oxide nano‐composites for sustainable environment. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry Shah Jalal University of Science and Technology Sylhet 3114 Bangladesh
| | - Pallab Chandra Saha
- Department of Chemistry Shah Jalal University of Science and Technology Sylhet 3114 Bangladesh
| | | | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) Department of Chemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Mohammad Al‐Mamun
- Centre for Clean Environment and Energy Griffith School of Environment Gold Coast Campus Griffith University Queensland Australia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) Department of Chemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
12
|
El Nahrawy AM, Elzwawy A, Alam M, Hemdan BA, Asiri AM, Karim MR, Hammad ABA, Rahman MM. Synthesis, structural analysis, electrochemical and antimicrobial activities of copper magnesium zirconosilicate (Cu20Mg10Si40Zr(30-x)O:(x = 0,5,7,10) Ni2+) nanocrystals. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Rahman MM, Alam MM, Asiri AM, Opo FADM. An Electrochemical Approach for the Selective Detection of Cancer Metabolic Creatine Biomarker with Porous Nano-Formulated CMNO Materials Decorated Glassy Carbon Electrode. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7060. [PMID: 33321693 PMCID: PMC7763360 DOI: 10.3390/s20247060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
The facile wet-chemical technique was used to prepare the low-dimensional nano-formulated porous mixed metal oxide nanomaterials (CuO.Mn2O3.NiO; CMNO NMs) in an alkaline medium at low temperature. Detailed structural, morphological, crystalline, and functional characterization of CMNO NMs were performed by X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDS) analyses. An efficient and selective creatine (CA) sensor probe was fabricated by using CMNO NMs decorated onto glassy carbon electrode (GCE) as CMNO NMs/GCE by using Nafion adhesive (5% suspension in ethanol). The relation of current versus the concentration of CA was plotted to draw a calibration curve of the CMNO NMs/GCE sensor probe, which was found to have a very linear value (r2 = 0.9995) over a large dynamic range (LDR: 0.1 nM~0.1 mM) for selective CA detection. The slope of LDR by considering the active surface area of GCE (0.0316 cm2) was applied to estimate the sensor sensitivity (14.6308 µAµM-1 cm-2). Moreover, the detection limit (21.63 ± 0.05 pM) of CMNO MNs modified GCE was calculated from the signal/noise (S/N) ratio at 3. As a CA sensor probe, it exhibited long-term stability, good reproducibility, and fast response time in the detection of CA by electrochemical approach. Therefore, this research technique is introduced as a promising platform to develop an efficient sensor probe for cancer metabolic biomarker by using nano-formulated mixed metal oxides for biochemical as well as biomedical research for the safety of health care fields.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Md. M. Alam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh;
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Firoz. A. D. M. Opo
- Department of Biomedical Science, College of Natural Sciences, Chosun University, Chosun 61452, Korea;
- Phytochemistry Research Laboratory, Department of Pharmacy, University of Asia Pacific, Dhaka 1000, Bangladesh
| |
Collapse
|
14
|
Alam MM, Asiri AM, Rahman MM, Islam MA. Selective detection of ascorbic acid with wet-chemically prepared CdO/SnO2/V2O5 micro-sheets by electrochemical approach. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03689-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
15
|
Li J, He L, Jiang J, Xu Z, Liu M, Liu X, Tong H, Liu Z, Qian D. Facile syntheses of bimetallic Prussian blue analogues (KxM[Fe(CN)6]·nH2O, M=Ni, Co, and Mn) for electrochemical determination of toxic 2-nitrophenol. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136579] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Abu-Zied BM, Alam M, Asiri AM, Ahmed J, Rahman MM. Efficient hydroquinone sensor development based on Co3O4 nanoparticle. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104972] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Subhan MA, Rifat TP, Chandra Saha P, Alam MM, Asiri AM, Rahman MM, Akter S, Raihan T, Azad AK, Uddin J. Enhanced visible light-mediated photocatalysis, antibacterial functions and fabrication of a 3-chlorophenol sensor based on ternary Ag 2O·SrO·CaO. RSC Adv 2020; 10:11274-11291. [PMID: 35495297 PMCID: PMC9050573 DOI: 10.1039/d0ra01205j] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/03/2020] [Indexed: 11/21/2022] Open
Abstract
A novel multi-metal oxide nanocomposite, Ag2O·SrO·CaO, was synthesized by a facile co-precipitation method followed by calcinations. The synthesized nanocomposite was characterized by XRD, FESEM, EDS, TEM, FTIR spectroscopy and photoluminescence (PL) spectroscopy. The composite showed enhanced photocatalytic activity under visible light irradiation and excellent anti-bacterial performance against both Gram-positive and Gram-negative bacteria. Here, the synthesized Ag2O·SrO·CaO nanomaterials were deposited on a glassy carbon electrode (GCE) in the form of a thin film to fabricate the desired electrochemical sensor and subjected to I-V analysis of 3-chlorophenol (3-CP) in a phosphate buffer solution (PBS). A calibration curve was plotted from the linear relation of current versus concentration and used to calculate the sensitivity (8.9684 μA μM-1 cm-2), linear dynamic range (LDR, 0.1 nM to 0.01 mM) and lower limit of detection (DL, 97.12 ± 4.86 pM). The analytical parameters of the sensor such as response time, reproducibility and long-term stability in the detection of 3-CP were reliable. Finally, it was used to analyze real samples collected from various environmental sources and found to be acceptable.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, School of Physical Sciences, Shah Jalal University of Science and Technology Sylhet-3114 Bangladesh +8801716073270
| | - Tanjila Parvin Rifat
- Department of Chemistry, School of Physical Sciences, Shah Jalal University of Science and Technology Sylhet-3114 Bangladesh +8801716073270
| | - Pallab Chandra Saha
- Department of Chemistry, School of Physical Sciences, Shah Jalal University of Science and Technology Sylhet-3114 Bangladesh +8801716073270
| | - M M Alam
- Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology Sylhet 3100 Bangladesh
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia +966-12-695-2292 +966-59-642-1830
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia +966-12-695-2292 +966-59-642-1830
| | - Sonia Akter
- Department of Chemistry, School of Physical Sciences, Shah Jalal University of Science and Technology Sylhet-3114 Bangladesh +8801716073270
| | - Topu Raihan
- Department of Genetics and Biotechnology, Shah Jalal University of Science and Technology Sylhet-3114 Bangladesh
| | - A K Azad
- Department of Genetics and Biotechnology, Shah Jalal University of Science and Technology Sylhet-3114 Bangladesh
| | - Jamal Uddin
- Center for Nanotechnology, Coppin State University Baltimore MD USA
| |
Collapse
|
18
|
Rahman MM, Karim MR, Alam MM, Zaman MB, Alharthi N, Alharbi H, Asiri AM. Facile and efficient 3-chlorophenol sensor development based on photolumenescent core-shell CdSe/ZnS quantum dots. Sci Rep 2020; 10:557. [PMID: 31953448 PMCID: PMC6969177 DOI: 10.1038/s41598-019-57091-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022] Open
Abstract
Quantum dots (QDs) are semiconducting inorganic nanoparticles, tiny molecules of 2-10 nm sizes to strength the quantum confinements of electrons. The QDs are good enough to emit light onto electrons for exciting and returning to the ground state. Here, CdSe/ZnS core/shell QDs have been prepared and applied for electrochemical sensor development in this approach. Flat glassy carbon electrode (GCE) was coated with CdSe/ZnS QDs as very thin uniform layer to result of the selective and efficient sensor of 3-CP (3-chlorophenol). The significant analytical parameters were calculated from the calibration plot such as sensitivity (3.6392 µA µM-1 cm-2) and detection limit (26.09 ± 1.30 pM) with CdSe/ZnS/GCE sensor probe by electrochemical approach. The calibration curve was fitted with the regression co-efficient r2 = 0.9906 in the range of 0.1 nM ∼ 0.1 mM concentration, which denoted as linear dynamic range (LDR). Besides these, it was performed the reproducibility in short response time and successfully validated the fabricated sensor for 3-CP in the real environmental and extracted samples. It is introduced as a noble route to detect the environmental phenolic contaminants using CdSe/ZnS QDs modified sensor by electrochemical method for the safety of healthcare and environmental fields at broad scales.
Collapse
Affiliation(s)
- Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421 & K.A.CARE Energy Research and Innovation Center, Riyadh, 11451, Saudi Arabia.
| | - M M Alam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3100, Bangladesh
| | - M Badruz Zaman
- Quality Engineering Test Establishment, Department of National Defence, Gatineau, QC, J8X 1C6, Canada
| | - Nabeel Alharthi
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Hamad Alharbi
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
19
|
Abou Hammad AB, Elzwawy A, Mansour AM, Alam MM, Asiri AM, Karim MR, Rahman MM, El Nahrawy AM. Detection of 3,4-diaminotoluene based on Sr 0.3Pb 0.7TiO 3/CoFe 2O 4 core/shell nanocomposite via an electrochemical approach. NEW J CHEM 2020. [DOI: 10.1039/d0nj01074j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We reported a scalable sol–gel method for the preparation of Sr0.3Pb0.7TiO3/CoFe2O4 core–shell magnetic nanocomposite with a finely controlled shell and evaluated its efficiency as an electrochemical sensor for the selective detection of 3,4-diaminotoluene.
Collapse
Affiliation(s)
- Ali B. Abou Hammad
- Solid State Physics Department
- Physics research division
- National Research Centre
- Cairo
- Egypt
| | - Amir Elzwawy
- Ceramics Department
- National Research Centre
- Cairo
- Egypt
| | - A. M. Mansour
- Solid State Physics Department
- Physics research division
- National Research Centre
- Cairo
- Egypt
| | - M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research and Chemistry Department, Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammad Razaul Karim
- Center of Excellence for Advanced Materials Research and Chemistry Department, Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research and Chemistry Department, Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Amany M. El Nahrawy
- Solid State Physics Department
- Physics research division
- National Research Centre
- Cairo
- Egypt
| |
Collapse
|
20
|
Rahman MM, Alam MM, Asiri AM, Uddin J. Assessment of environmentally unsafe pollutants using facile wet-chemically prepared CeO 2–ZrO 2 nanocomposites by the electrochemical approach. NEW J CHEM 2020. [DOI: 10.1039/d0nj04281a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selective and sensitive 4-methoxyphenol chemical sensor was developed with a co-doped CeO2–ZrO2 nanocomposite modified glassy carbon electrode as a sensor probe by electrochemical approach for the safety of environmental and ecological fields in broad scales.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Department of Chemistry
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Department of Chemistry
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology
- Department of Natural Sciences
- Coppin State University
- Baltimore
- USA
| |
Collapse
|
21
|
Rahman MM, Alam MM, Asiri AM, Uddin J. 3-Methoxyphenol chemical sensor fabrication with Ag 2O/CB nanocomposites. NEW J CHEM 2020. [DOI: 10.1039/c9nj05982b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The proposed chemical sensor based on Ag2O/CB nanocomposites is developed by electrochemical approach for the detection of hazardous selective 3-methoxyphenol chemical sensor for the safety of the environment sector in a broad scale.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - Jamal Uddin
- Department of Natural Sciences
- Coppin State University
- Baltimore
- USA
| |
Collapse
|
22
|
Rakib RH, Hasnat MA, Uddin MN, Alam MM, Asiri AM, Rahman MM, Siddiquey IA. Fabrication of a 3,4‐Diaminotoluene Sensor Based on a TiO
2
‐Al
2
O
3
Nanocomposite Synthesized by a Fast and Facile Microwave Irradiation Method. ChemistrySelect 2019. [DOI: 10.1002/slct.201902394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Riad H. Rakib
- Department of ChemistryShahjalal University of Science and Technology Sylhet- 3114 Bangladesh
| | - Mohammad A. Hasnat
- Department of ChemistryShahjalal University of Science and Technology Sylhet- 3114 Bangladesh
| | - Md. Nizam Uddin
- Department of ChemistryShahjalal University of Science and Technology Sylhet- 3114 Bangladesh
| | - M M Alam
- Department of Chemical Engineering and Polymer SciencesShahjalal University of Science and Technology Sylhet- 3114 Bangladesh
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
| | - Iqbal Ahmed Siddiquey
- Department of ChemistryShahjalal University of Science and Technology Sylhet- 3114 Bangladesh
| |
Collapse
|
23
|
Sekhosana KE, Shumba M, Nyokong T. Electrochemical Detection of 4‐Chlorophenol Using Glassy Carbon Electrodes Modified with Thulium Double‐Decker Phthalocyanine Salts. ChemistrySelect 2019. [DOI: 10.1002/slct.201803891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kutloano Edward Sekhosana
- Center for Nanotechnology and InnovationDepartment of ChemistryRhodes University, PO Box 94 Grahamstown 6140 South Africa
| | - Munyaradzi Shumba
- Center for Nanotechnology and InnovationDepartment of ChemistryRhodes University, PO Box 94 Grahamstown 6140 South Africa
| | - Tebello Nyokong
- Center for Nanotechnology and InnovationDepartment of ChemistryRhodes University, PO Box 94 Grahamstown 6140 South Africa
| |
Collapse
|
24
|
Khan MZ, Zhu J, Liu X. Reduced Graphene Oxide-Conjugated Urchin-Like NiCo 2O 4 Nanostructures for Individual Detection of o-Nitro and p-Amino Phenol. ACS OMEGA 2019; 4:11433-11439. [PMID: 31460248 PMCID: PMC6682125 DOI: 10.1021/acsomega.9b00804] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/19/2019] [Indexed: 06/01/2023]
Abstract
This work introduced a facile synthesis method of reduced graphene oxide-conjugated urchin-like NiCo2O4 nanostructures via a simple, cost-effective, and environmental-friendly one-pot hydrothermal method. The as-prepared rGO-NiCo2O4 nanocomposites were used to fabricate 3-aminopropyltriethoxysilane-modified glassy carbon electrode (GCE/APTES/rGO-NiCo2O4) for ultrasensitive electrochemical detection of o-nitro (o-NP) and p-amino (p-AP) phenols. The structure and morphology of the nanocomposite were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. Electrochemical experiments revealed that the nanocomposite exhibited remarkable electrochemical performances. A linear relationship is observed with the differential pulse voltammetry experiment between the peak currents and the concentrations in the ranges of 5.0 × 10-9 to 5.0 × 10-7 M (R 2 = 0.996) and 1.0 × 10-6 to 2.5 × 10-5 M (R 2 = 0.992) for o-NP and of 1.0 × 10-8 to 5.0 × 10-7 M (R 2 = 0.996) and 1.0 × 10-6 to 1.0 × 10-4 M (R 2 = 0.987) for p-AP. The calculated detection limits (S/N = 3) are 5.0 × 10-9 M and 1.0 ×10-8 M for o-NP and p-AP, respectively. Furthermore, a very high recovery percentage is obtained with the proposed sensor after successful application in the determination of target analytes in tap water samples.
Collapse
Affiliation(s)
- Md. Zaved
H. Khan
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng 475004, China
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
| | - Jinhua Zhu
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng 475004, China
| | - Xiuhua Liu
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng 475004, China
| |
Collapse
|
25
|
Aqlan FM, Alam M, Asiri AM, Zayed ME, Al-Eryani DA, Al-Zahrani FA, El-Shishtawy RM, Uddin J, Rahman MM. Fabrication of selective and sensitive Pb2+ detection by 2,2′-(−(1,2-phenylenebis(azaneylylidene))bis(methaneylylidene))diphenol by electrochemical approach for environmental remediation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Subhan MA, Jhuma SS, Chandra Saha P, Alam MM, Asiri AM, Al-Mamun M, Attia SA, Emon TH, Azad AK, Rahman MM. Efficient selective 4-aminophenol sensing and antibacterial activity of ternary Ag2O3·SnO2·Cr2O3 nanoparticles. NEW J CHEM 2019. [DOI: 10.1039/c9nj01760g] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical oxidation of 4-AP based on Ag2O3·SnO2·Cr2O3 NPs/binder/GCE sensor.
Collapse
|
27
|
Alam MM, Asiri AM, Uddin MT, Inamuddin I, Islam MA, Awual MR, Rahman MM. One-step wet-chemical synthesis of ternary ZnO/CuO/Co3O4 nanoparticles for sensitive and selective melamine sensor development. NEW J CHEM 2019. [DOI: 10.1039/c8nj06361c] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Using one-step wet-chemically synthesized ternary ZnO/CuO/Co3O4 nanoparticles (NPs) fabricated GCE sensor probe, a selective and sensitive melamine chemical sensor was developed by electrochemical approach, which exhibited the highest sensitivity, better repeatability, broad linear dynamic range, good linearity, fast response time, and lowest detection limit.
Collapse
Affiliation(s)
- M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology (SUST)
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - M. T. Uddin
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology (SUST)
- Sylhet 3100
- Bangladesh
| | - Inamuddin Inamuddin
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - M. A. Islam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology (SUST)
- Sylhet 3100
- Bangladesh
| | - Md. Rabiul Awual
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
28
|
Rahman MM, Alam MM, Asiri AM. Detection of toxic choline based on Mn2O3/NiO nanomaterials by an electrochemical method. RSC Adv 2019; 9:35146-35157. [PMID: 35530714 PMCID: PMC9074449 DOI: 10.1039/c9ra07459g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, a novel in situ choline sensor was assembled by attaching the binary Mn2O3/NiO nanoparticles (NPs) onto a glassy carbon electrode (GCE). Initially, Mn2O3/NiO NPs were synthesized via a wet-chemical process and fully characterized via XRD, XPS, FESEM, EDS, FTIR and UV-Vis methods. The analytical performances of the choline sensor were evaluated by an electrochemical method in the phosphate buffer phase. The estimated linear dynamic range (LDR) was found to be 0.1 nM to 0.1 mM. The other analytical performances of the choline sensor, such as sensitivity (16.4557 μA μM−1 cm−2) and detection limit (5.77 ± 0.29 pM), were also calculated very carefully from the calibration plot. Overall, the choline sensor exhibited a reliable reproducibility, in situ validity, selectivity, interference effect, stability, and intra-day and inter-day performances with high accuracy in a short response time. Moreover, the probe was successfully applied to detect choline in real human, mouse and rabbit serum. This fabrication route would be a novel approach for the detection of selective biochemical sensor in the healthcare and biomedical fields. In this study, a novel in situ choline sensor was assembled by attached the binary Mn2O3/NiO nanoparticles onto glassy carbon electrode, which might be a reliable way to develop of future sensor in the field of biomedical and healthcare fields.![]()
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
29
|
Katowah DF, Hussein MA, Alam MM, Sobahi TR, Gabal MA, Asiri AM, Rahman MM. Poly(pyrrole-co-o-toluidine) wrapped CoFe2O4/R(GO–OXSWCNTs) ternary composite material for Ga3+ sensing ability. RSC Adv 2019; 9:33052-33070. [PMID: 35529122 PMCID: PMC9073328 DOI: 10.1039/c9ra03593a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/02/2019] [Indexed: 11/21/2022] Open
Abstract
A ternary P(Py-co-OT)/CF/R(GO–OXSWCNTs) nanocomposite has been fabricated as a novel conductive hybrid material with high stability and excellent electrochemical Ga3+ sensing ability.
Collapse
Affiliation(s)
- Dina F. Katowah
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - T. R. Sobahi
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - M. A. Gabal
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
30
|
Alam MM, Asiri AM, Uddin MT, Islam MA, Awual MR, Rahman MM. Detection of uric acid based on doped ZnO/Ag2O/Co3O4 nanoparticle loaded glassy carbon electrode. NEW J CHEM 2019. [DOI: 10.1039/c9nj01287g] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly sensitive and selective uric acid sensor was fabricated using facile wet-chemically prepared ternary doped ZnO/Ag2O/Co3O4 nanoparticles onto glassy carbon electrode by electrochemical approach, which introduced a prospective and reliable route to the future development of enzyme-free sensor by doped nanomaterials in broad scales.
Collapse
Affiliation(s)
- M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - M. T. Uddin
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - M. A. Islam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Md. Rabiul Awual
- Center of Excellence for Advanced Materials Research
- Chemistry Department, Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
31
|
Karim MR, Alam MM, Aijaz MO, Asiri AM, Dar MA, Rahman MM. Fabrication of 1,4-dioxane sensor based on microwave assisted PAni-SiO 2 nanocomposites. Talanta 2018; 193:64-69. [PMID: 30368299 DOI: 10.1016/j.talanta.2018.09.100] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 11/15/2022]
Abstract
In this study, conducting polyaniline (PAni) and silicon dioxide (SiO2) nanocomposites (NCs) were synthesized for chemical sensing applications by microwave assisted reaction technique. Facile synthesis and characterization of the PAni-SiO2 nanocomposites were investigated in details and discussed in this report. For the potential application, 1,4-dioxane chemical sensor was fabricated with the PAni-SiO2 nanocomposites deposited onto glassy carbon electrode (GCE). A very thin uniform film was deposited onto GCE with nanocomposite by using conducting 5% nafion binder at room conditions. To evaluate the sensor analytical performances, a calibration plot such as current versus concentration of 1,4-dioxane was drawn and calculated the analytical parameters from the slope of calibration curve. Results are found as sensitivity (0.5934 µAµmol-1 L-2 cm-2), detection limit (16.0 ± 0.8 pmol L-1), and quantification limit (LOQ; 53.3 ± 1.5 pmol L-1) in this observation. Considering the linear region in calibration plot, the linear dynamic range of 1,4-dioxane chemical sensor was found (0.12 nmol L-1 ∼ 1.2 mmol L-1). Besides this, the proposed 1,4-dioxane chemical sensor was exhibited good reproducibility, long-term stability, high accuracy in detecting of 1,4-dioxane in real environmental samples. This research is to develop of a selective and an efficient electrochemical sensor. It might be a simple and easy way by applying electrochemical method to ensure the safe and sustainable green environment.
Collapse
Affiliation(s)
- Mohammad R Karim
- Center of Excellence for Research in Engineering Materials (CEREM), King Saud University, Riyadh 11421, Saudi Arabia.
| | - M M Alam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh
| | - M O Aijaz
- Center of Excellence for Research in Engineering Materials (CEREM), King Saud University, Riyadh 11421, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research & Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - M A Dar
- Center of Excellence for Research in Engineering Materials (CEREM), King Saud University, Riyadh 11421, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research & Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
32
|
Alam M, Asiri AM, Uddin MT, Islam MA, Rahman MM. Wet-chemically prepared low-dimensional ZnO/Al2O3/Cr2O3 nanoparticles for xanthine sensor development using an electrochemical method. RSC Adv 2018; 8:12562-12572. [PMID: 35541273 PMCID: PMC9079617 DOI: 10.1039/c8ra01734d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/19/2018] [Indexed: 11/30/2022] Open
Abstract
A reliable xanthine (XNT) chemical sensor was fabricated using a facile wet-chemical method (by co-precipitation) to prepare ZnO/Al2O3/Cr2O3 nanoparticles (NPs) in an alkaline medium at low temperature. Powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-vis) were implemented for detailed characterization of the NPs. To fabricate the working electrode as a XNT chemical sensor probe, a glassy carbon electrode (GCE) with a 0.0316 cm2 surface area was coated with an ethanolic slurry of the prepared ZnO/Al2O3/Cr2O3 NPs to make a thin layer and used to analyse XNT in a phosphate buffer system. To evaluate the analytical performances of the XNT chemical sensor, the calibration curve of XNT was plotted as the relationship of current versus the concentration of XNT. The plotted calibration curve was found to be linear over the LDR (linear dynamic range) of 0.05 nM to 5.0 μM. The assembled XNT electrochemical sensor exhibited the highest sensitivity (70.8861 μA μM−1 cm−2), the lowest detection limit (1.34 ± 0.07 pM), good reproducibility performance with high accuracy and long-term stability with standard results under ambient conditions. This is a simple route to selectively detect XNT with wet-chemically prepared co-doped ZnO/Al2O3/Cr2O3 nanomaterials using a reliable electrochemical method at a large scale for safety within healthcare fields. This is a simple route to detect the selective xanthine with wet-chemically prepared co-doped ZnO/Al2O3/Cr2O3 nanomaterials by reliable electrochemical method at large scales for the safety of healthcare fields.![]()
Collapse
Affiliation(s)
- M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - M. T. Uddin
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - M. A. Islam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Mohammed M. Rahman
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|