1
|
Elbashir A, Seada M, Meaz T, El-Ghazzawy E. The role of thermal treatment and formulation on modifying the structural nature and optimizing certain physical features of coprecipitated superparamagnetic Co-Mn-Cr spinel ferrite. Heliyon 2024; 10:e33632. [PMID: 39027582 PMCID: PMC11255452 DOI: 10.1016/j.heliyon.2024.e33632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Examining the composition and heat treatment effects of co-precipitated Co0.7Mn0.3CrxFe2-xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1) ferrite nanoparticles provides valuable insights into the structural, morphological, optical, magnetic, and electrical properties of these materials. X-ray diffraction (XRD) and Rietveld refinement analyses confirm the spinel cubic crystalline phase of the samples, indicating the formation of well-defined crystal structures. Transmission electron microscope micrographs manifest the nanoscale nature of the produced specimens and their narrow particle size distribution with a small standard deviation. This uniformity is often desirable in many applications because it confirms the similarity of the properties and behaviors of the nanoparticles. The Fourier transform infrared spectroscopy study suggests that the substitution of Cr3+ ions at octahedral sites influences molecular stability. Annealing causes a slight expansion in bond length and a subsequent decrease in stability. The presence of Cr3+ ions enhances the strength of the specimens, while annealing weakens them. This indicates a fine balance between composition and processing conditions in determining the strength of the materials. The estimated optical indirect bandgap undergoes a redshift by adding Cr3+ ions. Annealing at elevated temperatures reduces the bandgap due to the quantum confinement effect, indicating the tunability of optical properties through compositional and thermal control. Samples with x ≥ 0.6 exhibit nearly zero coercivity, indicating superparamagnetic behavior, which have promising applications. The preference of Cr3+ ions to occupy octahedral B-sites influences the magnetic behavior of the materials. The dielectric polarization and dielectric loss improved by adding Cr3+ ions, while the alternating current conductivity decreased. From impedance spectroscopy, the real and imaginary parts, Z' and Z", were increased by increasing Cr content. Furthermore, the annealing process greatly affects the electrical properties of the specimens. Overall, the study emphasizes the intricate relationship between composition, annealing conditions, and the resulting structural, magnetic, and electrical properties of Co-Mn-Cr ferrite nanoparticles, providing significant observations for the development of tailored materials for diverse applications in electronics, magnetics, and medicine.
Collapse
Affiliation(s)
- A.M. Elbashir
- Department of Physics, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16273, Saudi Arabia
| | - M.M. Seada
- Department of Physics, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16273, Saudi Arabia
- Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - T.M. Meaz
- Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - E.H. El-Ghazzawy
- Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Manikandan M, Manikandan E, Swetha V, Kurpaa S, Vijay S, Kiruthika V. Nickel-copper-cobalt mixed oxide electrode material for high performance asymmetric supercapacitor. Sci Rep 2024; 14:10821. [PMID: 38734707 PMCID: PMC11088663 DOI: 10.1038/s41598-024-61625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
Nickel copper cobalt oxide (NiCuCoO) ternary metal oxide nanoparticles were synthesized by employing the hydrothermal method. NiCuCoO electrode demonstrates a specified capacity of 596 C g-1 at 1 A g-1, high capacitance retaining of 99% even if 1000 sequences at the density of current 10 A g-1, and significant extended cyclic strength over 1000 sequences. The gathered asymmetric supercapacitor (ASC) tool via NiCuCoO as the cathode and activated carbon as anode materials achieve a specified capacity of 168 C g-1 at a current density of 1 Ag-1, an excellent capacity retaining of 95% even later than 5000 sequences at a density of current 10 A g-1. The fabricated device exhibits a high density of energy and power is 96 Wh kg-1 and 841 W kg-1. The prepared material confirms an excellent capacitance routine, so this work represents for a next-generation energy storage device.
Collapse
Affiliation(s)
- M Manikandan
- Centre for Innovation and Product Development, Vellore Institute of Technology, Chennai, 600127, India
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - E Manikandan
- Centre for Innovation and Product Development, Vellore Institute of Technology, Chennai, 600127, India.
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India.
| | - V Swetha
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - S Kurpaa
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - Sukkrishvar Vijay
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - V Kiruthika
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India
| |
Collapse
|
3
|
Teixeira LT, de Lima SLS, Rosado TF, Liu L, Vitorino HA, Dos Santos CC, Mendonça JP, Garcia MAS, Siqueira RNC, da Silva AGM. Sustainable Cellulose Nanofibers-Mediated Synthesis of Uniform Spinel Zn-Ferrites Nanocorals for High Performances in Supercapacitors. Int J Mol Sci 2023; 24:ijms24119169. [PMID: 37298121 DOI: 10.3390/ijms24119169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023] Open
Abstract
Spinel ferrites are versatile, low-cost, and abundant metal oxides with remarkable electronic and magnetic properties, which find several applications. Among them, they have been considered part of the next generation of electrochemical energy storage materials due to their variable oxidation states, low environmental toxicity, and possible synthesis through simple green chemical processing. However, most traditional procedures lead to the formation of poorly controlled materials (in terms of size, shape, composition, and/or crystalline structure). Thus, we report herein a cellulose nanofibers-mediated green procedure to prepare controlled highly porous nanocorals comprised of spinel Zn-ferrites. Then, they presented remarkable applications as electrodes in supercapacitors, which were thoroughly and critically discussed. The spinel Zn-ferrites nanocorals supercapacitor showed a much higher maximum specific capacitance (2031.81 F g-1 at a current density of 1 A g-1) than Fe2O3 and ZnO counterparts prepared by a similar approach (189.74 and 24.39 F g-1 at a current density of 1 A g-1). Its cyclic stability was also scrutinized via galvanostatic charging/discharging and electrochemical impedance spectroscopy, indicating excellent long-term stability. In addition, we manufactured an asymmetric supercapacitor device, which offered a high energy density value of 18.1 Wh kg-1 at a power density of 2609.2 W kg-1 (at 1 A g-1 in 2.0 mol L-1 KOH electrolyte). Based on our findings, we believe that higher performances observed for spinel Zn-ferrites nanocorals could be explained by their unique crystal structure and electronic configuration based on crystal field stabilization energy, which provides an electrostatic repulsion between the d electrons and the p orbitals of the surrounding oxygen anions, creating a level of energy that determines their final supercapacitance then evidenced, which is a very interesting property that could be explored for the production of clean energy storage devices.
Collapse
Affiliation(s)
- Lucas T Teixeira
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-040, RJ, Brazil
| | - Scarllet L S de Lima
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-040, RJ, Brazil
| | - Taissa F Rosado
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-040, RJ, Brazil
| | - Liying Liu
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil
| | - Hector A Vitorino
- Centro de Investigación en Biodiversidad para la Salud, Universidad Privada Norbert Wiener, Lima 15046, Peru
| | - Clenilton C Dos Santos
- Departamento de Física, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Jhonatam P Mendonça
- Departamento de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Marco A S Garcia
- Departamento de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Rogério N C Siqueira
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-040, RJ, Brazil
| | - Anderson G M da Silva
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-040, RJ, Brazil
| |
Collapse
|
4
|
Lee SY, An HJ, Moon J, Kim DH, Park KW, Park JT. Design of ultra-thin nanosheet bimetallic NiCo MOF with binary ligand via solvent-assisted ligand exchange (SALE) reaction for high performance supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
ur Rehman A, Batool Z, Ahmad M, Iqbal MW, ul Haq A, Hegazy H. Impact of ZnO on structural and electrochemical properties of silver spinel ferrites for asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Mohamed Racik K, Anand S, Muniyappan S, Nandhini S, Rameshkumar S, Mani D, Karuppasamy P, Pandian MS, Ramasamy P. Preparation of CoFe2O4/SiO2 nanocomposite as potential electrode materials for supercapacitors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Tumbalev V, Kovacheva D, Spassova I, Velinova R, Tyuliev G, Velinov N, Naydenov A. Novel Nanosized Spinel MnCoFeO 4 for Low-Temperature Hydrocarbon Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3900. [PMID: 36364676 PMCID: PMC9653678 DOI: 10.3390/nano12213900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The present paper reports on MnCoFeO4 spinels with peculiar composition and their catalytic behavior in the reactions of complete oxidation of hydrocarbons. The samples were synthesized by solution combustion method with sucrose and citric acid as fuels. All samples were characterized by powder X-ray diffraction, N2-physisorption, scanning electron microscopy, thermal analysis, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy. The catalytic properties of the spinels with Mn:Co:Fe = 1:1:1 composition were studied in reactions of complete oxidation of methane, propane, butane, and propane in the presence of water as model pollutants. Both prepared catalysts are nanosized materials. The slight difference in the compositions, structure, and morphology is due to the type of fuel used in the synthesis reaction. The spinel, prepared with sucrose, shows a higher specific surface area, pore volume, higher amount of small particles fraction, higher thermal stability, and as a result, more exposed active sites on the sample surface that lead to higher catalytic activity in the studied oxidation reactions. After the catalytic tests, both samples do not undergo any substantial phase and morphological changes; thus, they could be applied in low-temperature hydrocarbon oxidation reactions.
Collapse
Affiliation(s)
- Vencislav Tumbalev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ralitsa Velinova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Georgi Tyuliev
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nikolay Velinov
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Anton Naydenov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
8
|
Sanchez-Lievanos K, Knowles KE. Controlling Cation Distribution and Morphology in Colloidal Zinc Ferrite Nanocrystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7446-7459. [PMID: 36039100 PMCID: PMC9417087 DOI: 10.1021/acs.chemmater.2c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This paper describes the first synthetic method to achieve independent control over both the cation distribution (quantified by the inversion parameter x) and size of colloidal ZnFe2O4 nanocrystals. Use of a heterobimetallic triangular complex of formula ZnFe2(μ3-O)(μ2-O2CCF3)6(H2O)3 as a single-source precursor, solvothermal reaction conditions, absence of hydroxyl groups from the reaction solvent, and the presence of oleylamine are required to achieve well-defined, crystalline, and monodisperse ZnFe2O4 nanoparticles. The size of the ZnFe2O4 nanocrystals increases as the ratio of oleic acid and oleylamine ligands to precursor increases. The inversion parameter increases with increasing solubility of the precursor in the reaction solvent, with the presence of oleic acid in the reaction mixture, and with decreasing reaction temperature. These results are consistent with a mechanism in which ligand exchange between oleic acid and carboxylate ligands bound to the precursor complex influences the degree to which the reaction produces a kinetically trapped or thermodynamically stable cation distribution. Importantly, these results indicate that preservation of the triangular Zn-O-Fe2 core structure of the precursor in the reactive monomer species is crucial to the production of a phase-pure ZnFe2O4 product and to the ability to tune the cation distribution. Overall, these results demonstrate the advantages of using a single-source precursor and solvothermal reaction conditions to achieve synthetic control over the structure of ternary spinel ferrite nanocrystals.
Collapse
|
9
|
Rational design and facile synthesis of Ni-Co-Fe ternary LDH porous sheets for high-performance aqueous asymmetric supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
High-performance graphene oxide-grafted chitosan-starch solid biopolymer electrolytes for flexible hybrid supercapacitors. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-021-05093-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
High performance magnetic pseudocapacitors - Direct correlation between specific capacitance and diffusion coefficients. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Jose V, Jose V, Freeda Christy CE, Nesaraj AS. Spinel-based electrode materials for application in electrochemical supercapacitors – present status and future prospects. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1956968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vismaya Jose
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Vinaya Jose
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Clementz Edwardraj Freeda Christy
- Department of Civil Engineering, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Arputharaj Samson Nesaraj
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| |
Collapse
|
13
|
Majumdar S, Ray R, Sen P. Anomalous intra diffusive behavior of chitosan/PVDF solid polymer electrolytes and the enhancement of effective specific capacitance with nanostructured spinel MnCoFeO4 electrode in solid-state supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Abdel Maksoud MIA, Fahim RA, Shalan AE, Abd Elkodous M, Olojede SO, Osman AI, Farrell C, Al-Muhtaseb AH, Awed AS, Ashour AH, Rooney DW. Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:375-439. [DOI: 10.1007/s10311-020-01075-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/06/2020] [Indexed: 09/02/2023]
Abstract
AbstractSupercapacitors are increasingly used for energy conversion and storage systems in sustainable nanotechnologies. Graphite is a conventional electrode utilized in Li-ion-based batteries, yet its specific capacitance of 372 mA h g−1 is not adequate for supercapacitor applications. Interest in supercapacitors is due to their high-energy capacity, storage for a shorter period and longer lifetime. This review compares the following materials used to fabricate supercapacitors: spinel ferrites, e.g., MFe2O4, MMoO4 and MCo2O4 where M denotes a transition metal ion; perovskite oxides; transition metals sulfides; carbon materials; and conducting polymers. The application window of perovskite can be controlled by cations in sublattice sites. Cations increase the specific capacitance because cations possess large orbital valence electrons which grow the oxygen vacancies. Electrodes made of transition metal sulfides, e.g., ZnCo2S4, display a high specific capacitance of 1269 F g−1, which is four times higher than those of transition metals oxides, e.g., Zn–Co ferrite, of 296 F g−1. This is explained by the low charge-transfer resistance and the high ion diffusion rate of transition metals sulfides. Composites made of magnetic oxides or transition metal sulfides with conducting polymers or carbon materials have the highest capacitance activity and cyclic stability. This is attributed to oxygen and sulfur active sites which foster electrolyte penetration during cycling, and, in turn, create new active sites.
Collapse
|
15
|
Kuzhandaivel H, Selvaraj Y, Franklin MC, Manickam S, Sivalingam Nallathambi K. Low-temperature-synthesized Mn-doped Bi 2Fe 4O 9 as an efficient electrode material for supercapacitor applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj01633d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Manganese-doped Bi2Fe4O9, a new material synthesized at a low temperature with a micro-rectangular-shaped particles, is used for supercapacitor applications.
Collapse
Affiliation(s)
| | - Yogapriya Selvaraj
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore-641014, India
| | - Manik Clinton Franklin
- Electrochemical Materials and Devices Lab, Department of Chemistry, Bharathiar University, Coimbatore-641046, India
| | - Sornalatha Manickam
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore-641014, India
| | | |
Collapse
|
16
|
Muzakir MM, Zainal Z, Lim HN, Abdullah AH, Bahrudin NN. Enhanced capacitive performance of cathodically reduced titania nanotubes pulsed deposited with Mn 2O 3 as supercapacitor electrode. RSC Adv 2021; 11:26700-26709. [PMID: 35479972 PMCID: PMC9037482 DOI: 10.1039/d1ra00564b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/04/2021] [Indexed: 11/21/2022] Open
Abstract
The mass loading of Mn2O3 by pulse electrodeposition (PED) onto reduced titania nanotubes (R-TNTs) greatly influences the electrochemical performance of the composite.
Collapse
Affiliation(s)
| | - Zulkarnain Zainal
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- Malaysia
- Materials Synthesis and Characterization Laboratory
| | - Hong Ngee Lim
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- Malaysia
- Materials Synthesis and Characterization Laboratory
| | - Abdul Halim Abdullah
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- Malaysia
- Materials Synthesis and Characterization Laboratory
| | | |
Collapse
|
17
|
Sethi M, Shenoy US, Bhat DK. A porous graphene-NiFe 2O 4 nanocomposite with high electrochemical performance and high cycling stability for energy storage applications. NANOSCALE ADVANCES 2020; 2:4229-4241. [PMID: 36132772 PMCID: PMC9418577 DOI: 10.1039/d0na00440e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 05/19/2023]
Abstract
It is well agreed that supercapacitors form an important class of energy storage devices catering to a variety of needs. However, designing the same using eco-friendly and earth abundant materials with high performance is still the dire need of the day. Here, we report a facile solvothermal synthesis of a porous graphene-NiFe2O4 (PGNF) nanocomposite. Thorough elemental, diffraction, microscopic and spectroscopic studies confirmed the formation of the PGNF composite, in which the NF nanoparticles are covered over the PG surface. The obtained 10 PGNF composite showed a surface area of 107 m2 g-1, with large pore volume which is favorable for charge storage properties. When utilizing the material as an electrode for a supercapacitor in a 2 M KOH aqueous electrolyte, the electrode displayed an impressive specific capacitance value of 1465.0 F g-1 at a scan rate of 5 mV s-1 along with a high capacitance retention of 94% after 10 000 discharge cycles. The fabricated symmetrical supercapacitor device exhibited an energy density of 4.0 W h kg-1 and a power density of 3600.0 W kg-1 at a high applied current density of 14 A g-1. The superior electrochemical performance is attributed to the synergetic effect of the composite components which not only provided enough electroactive channels for the smooth passage of electrolyte ions but also maintained the hybrid structure intact in the ongoing electrochemical process. The obtained results underpin the promising utility of this material for future electrochemical energy storage devices.
Collapse
Affiliation(s)
- Meenaketan Sethi
- Department of Chemistry, National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| | - U Sandhya Shenoy
- Department of Chemistry, College of Engineering and Technology, Srinivas University Mukka Mangalore 574146 India
| | - D Krishna Bhat
- Department of Chemistry, National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| |
Collapse
|
18
|
Using Ca2.9Nd0.1Co4O9+δ perovskites to convert a flexible carbon nanotube based supercapacitor to a battery-like device. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Characterization and Deployment of Surface-Engineered Cobalt Ferrite Nanospheres as Photocatalyst for Highly Efficient Remediation of Alizarin Red S Dye from Aqueous Solution. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01654-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Sharifi S, Yazdani A, Rahimi K. Incremental substitution of Ni with Mn in NiFe 2O 4 to largely enhance its supercapacitance properties. Sci Rep 2020; 10:10916. [PMID: 32616779 PMCID: PMC7331705 DOI: 10.1038/s41598-020-67802-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/12/2020] [Indexed: 11/08/2022] Open
Abstract
By using a facile hydrothermal method, we synthesized Ni1-xMnxFe2O4 nanoparticles as supercapacitor electrode materials and studied how the incremental substitution of Ni with Mn would affect their structural, electronic, and electrochemical properties. X-ray diffractometry confirmed the single-phase spinel structure of the nanoparticles. Raman spectroscopy showed the conversion of the inverse structure of NiFe2O4 to the almost normal structure of MnFe2O4. Field-emission scanning electron microscopy showed the spherical shape of the obtained nanoparticles with a size in the range of 20-30 nm. Optical bandgaps were found to decrease as the content of Mn increased. Electrochemical characterizations of the samples indicated the excellent performance and the desirable cycling stability of the prepared nanoparticles for supercapacitors. In particular, the specific capacitance of the prepared Ni1-xMnxFe2O4 nanoparticles was found to increase as the content of Mn increased, reaching the highest specific capacitance of 1,221 F/g for MnFe2O4 nanoparticles at the current density of 0.5 A/g with the corresponding power density of 473.96 W/kg and the energy density of 88.16 Wh/kg. We also demonstrated the real-world application of the prepared MnFe2O4 nanoparticles. We performed also a DFT study to verify the changes in the geometrical and electronic properties that could affect the electrochemical performance.
Collapse
Affiliation(s)
- Samira Sharifi
- Condensed Matter Group, Department of Basic Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Avenue, Tehran, Iran
| | - Ahmad Yazdani
- Condensed Matter Group, Department of Basic Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Avenue, Tehran, Iran.
| | - Kourosh Rahimi
- Condensed Matter Group, Department of Basic Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Avenue, Tehran, Iran
| |
Collapse
|
21
|
Nikam SM, Sharma A, Rahaman M, Teli AM, Mujawar SH, Zahn DRT, Patil PS, Sahoo SC, Salvan G, Patil PB. Pulsed laser deposited CoFe 2O 4 thin films as supercapacitor electrodes. RSC Adv 2020; 10:19353-19359. [PMID: 35515464 PMCID: PMC9054038 DOI: 10.1039/d0ra02564j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
The influence of the substrate temperature on pulsed laser deposited (PLD) CoFe2O4 thin films for supercapacitor electrodes was thoroughly investigated. X-ray diffractometry and Raman spectroscopic analyses confirmed the formation of CoFe2O4 phase for films deposited at a substrate temperature of 450 °C. Topography and surface smoothness was measured using atomic force microscopy. We observed that the films deposited at room temperature showed improved electrochemical performance and supercapacitive properties compared to those of films deposited at 450 °C. Specific capacitances of about 777.4 F g-1 and 258.5 F g-1 were obtained for electrodes deposited at RT and 450 °C, respectively, at 0.5 mA cm-2 current density. The CoFe2O4 films deposited at room temperature exhibited an excellent power density (3277 W kg-1) and energy density (17 W h kg-1). Using electrochemical impedance spectroscopy, the series resistance and charge transfer resistance were found to be 1.1 Ω and 1.5 Ω, respectively. The cyclic stability was increased up to 125% after 1500 cycles due to the increasing electroactive surface of CoFe2O4 along with the fast electron and ion transport at the surface.
Collapse
Affiliation(s)
- S M Nikam
- School of Nanoscience and Technology, Shivaji University Kolhapur Maharashtra - 416004 India
| | - A Sharma
- Semiconductor Physics, Chemnitz University of Technology 09107 Chemnitz Germany
| | - M Rahaman
- Semiconductor Physics, Chemnitz University of Technology 09107 Chemnitz Germany
| | - A M Teli
- Department of Physics, Shivaji University Kolhapur Maharashtra - 416004 India
| | - S H Mujawar
- Department of Physics, Yashavantrao Chavan Institute of Science Satara Maharashtra - 415001 India
| | - D R T Zahn
- Semiconductor Physics, Chemnitz University of Technology 09107 Chemnitz Germany
| | - P S Patil
- School of Nanoscience and Technology, Shivaji University Kolhapur Maharashtra - 416004 India
- Department of Physics, Shivaji University Kolhapur Maharashtra - 416004 India
| | - S C Sahoo
- Department of Physics, Central University of Kerala Kasaragod Kerala - 671320 India
| | - G Salvan
- Semiconductor Physics, Chemnitz University of Technology 09107 Chemnitz Germany
| | - P B Patil
- Department of Physics, The New College, Shivaji University Kolhapur Maharashtra - 416012 India
| |
Collapse
|
22
|
Modification of structural and magnetic properties of Co0.5Ni0.5Fe2O4 nanoparticles embedded Polyvinylidene Fluoride nanofiber membrane via electrospinning method. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100428] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Elseman AM, Fayed MG, Mohamed SG, Rayan DA, Allam NK, Rashad MM, Song QL. CoFe
2
O
4
@Carbon Spheres Electrode: A One‐Step Solvothermal Method for Enhancing the Electrochemical Performance of Hybrid Supercapacitors. ChemElectroChem 2020. [DOI: 10.1002/celc.202000005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ahmed Mourtada Elseman
- Institute for Clean Energy and Advanced Materials School of Materials and EnergySouthwest University Chongqing 400715 P. R. China
- Electronic & Magnetic Materials Department Advanced Materials DivisionCentral Metallurgical Research and Development Institute (CMRDI) Helwan, P.O. Box 87 Cairo 11421 Egypt
| | - Moataz G. Fayed
- Mining and Metallurgy Engineering DepartmentTabbin Institute for Metallurgical Studies (TIMS) Tabbin, Helwan 109 Cairo 11421 Egypt
| | - Saad G. Mohamed
- Mining and Metallurgy Engineering DepartmentTabbin Institute for Metallurgical Studies (TIMS) Tabbin, Helwan 109 Cairo 11421 Egypt
| | - Diaa A. Rayan
- Electronic & Magnetic Materials Department Advanced Materials DivisionCentral Metallurgical Research and Development Institute (CMRDI) Helwan, P.O. Box 87 Cairo 11421 Egypt
| | - Nageh K. Allam
- Energy Materials Laboratory (EML) School of Sciences and EngineeringThe American University in Cairo New Cairo 11835 Egypt
| | - Mohamed M. Rashad
- Electronic & Magnetic Materials Department Advanced Materials DivisionCentral Metallurgical Research and Development Institute (CMRDI) Helwan, P.O. Box 87 Cairo 11421 Egypt
| | - Qun Liang Song
- Institute for Clean Energy and Advanced Materials School of Materials and EnergySouthwest University Chongqing 400715 P. R. China
| |
Collapse
|
24
|
Ferreira LS, Silva TR, Silva VD, Simões TA, Araújo AJ, Morales MA, Macedo DA. Proteic sol-gel synthesis, structure and battery-type behavior of Fe-based spinels (MFe2O4, M = Cu, Co, Ni). ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Makkar P, Chandel M, Patra MK, Ghosh NN. A "One-Pot" Route for the Synthesis of Snowflake-like Dendritic CoNi Alloy-Reduced Graphene Oxide-Based Multifunctional Nanocomposites: An Efficient Magnetically Separable Versatile Catalyst and Electrode Material for High-Performance Supercapacitors. ACS OMEGA 2019; 4:20672-20689. [PMID: 31858053 PMCID: PMC6906946 DOI: 10.1021/acsomega.9b02861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/14/2019] [Indexed: 05/22/2023]
Abstract
In this paper, a simple "one pot" methodology to synthesize snowflake-like dendritic CoNi alloy-reduced graphene oxide (RGO) nanocomposites has been reported. First-principles quantum mechanical calculations based on density functional theory (DFT) have been conducted to understand the electronic structures and properties of the interface between Co, Ni, and graphene. Detailed investigations have been conducted to evaluate the performance of CoNi alloy and CoNi-RGO nanocomposites for two different types of applications: (i) as the catalyst for the reduction reaction of 4-nitrophenol and Knoevenagel condensation reaction and (ii) as the active electrode material in the supercapacitor applications. Here, the influence of microstructures of CoNi alloy particles (spherical vs snowflake-like dendritic) and the effect of immobilization of CoNi alloy on the surface of RGO on the performance of CoNi-RGO nanocomposites have been demonstrated. CoNi alloy having a snowflake-like dendritic microstructure exhibited better performance than that of spherical CoNi alloy, and CoNi-RGO nanocomposites showed improved properties compared to CoNi alloy. The k app value of the (CoNiD)60RGO40-catalyzed reduction reaction of 4-nitrophenol is 20.55 × 10-3 s-1, which is comparable and, in some cases, superior to many RGO-based catalysts. The (CoNiD)60RGO40-catalyzed Knoevenagel condensation reaction showed the % yield of the products in the range of 80-93%. (CoNiD)60RGO40 showed a specific capacitance of 501 F g-1 (at 6 A g-1), 21.08 Wh kg-1 energy density at a power density of 1650 W kg-1, and a retention of ∼85% of capacitance after 4000 cycles. These results indicate that (CoNiD)60RGO40 could be considered as a promising electrode material for high-performance supercapacitors. The synergistic effect, derived from the hierarchical structure of CoNiD-RGO nanocomposites, is the origin for its superior performance. The easy synthetic methodology, high catalytic efficiency, and excellent supercapacitance performance make (CoNiD)60RGO40 an appealing multifunctional material.
Collapse
Affiliation(s)
- Priyanka Makkar
- Nano-materials
Lab, Department of Chemistry, Birla Institute
of Technology and Science, Pilani K K Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Madhurya Chandel
- Nano-materials
Lab, Department of Chemistry, Birla Institute
of Technology and Science, Pilani K K Birla Goa Campus, Zuarinagar, Goa 403726, India
| | | | - Narendra Nath Ghosh
- Nano-materials
Lab, Department of Chemistry, Birla Institute
of Technology and Science, Pilani K K Birla Goa Campus, Zuarinagar, Goa 403726, India
| |
Collapse
|
26
|
The electrochemical performance of electrodeposited chitosan bio-nanopolymer in non-aqueous electrolyte: a new anodic material for supercapacitor. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1054-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
27
|
Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.071] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
El-Gendy DM, Abdel Ghany NA, Allam NK. Green, single-pot synthesis of functionalized Na/N/P co-doped graphene nanosheets for high-performance supercapacitors. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.038] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Elkholy AE, Dhmees AS, Heakal FET, Deyab MA. Mesoporous ZnMoS4 as a supercapacitor electrode material with battery-like behavior. NEW J CHEM 2019. [DOI: 10.1039/c8nj05640d] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports the successful synthesis of bimetallic sulfide ZnMoS4 (ZMS) using a solvothermal method, and measuring its supercapacitive performance.
Collapse
Affiliation(s)
- Ayman E. Elkholy
- Department of Analysis and Evaluation
- Egyptian Petroleum Research Institute
- 11727 Cairo
- Egypt
| | - Abdelghaffar S. Dhmees
- Department of Analysis and Evaluation
- Egyptian Petroleum Research Institute
- 11727 Cairo
- Egypt
| | | | - M. A. Deyab
- Department of Analysis and Evaluation
- Egyptian Petroleum Research Institute
- 11727 Cairo
- Egypt
| |
Collapse
|
31
|
El-Gendy D, Abdel Ghany NA, Allam NK. Black titania nanotubes/spongy graphene nanocomposites for high-performance supercapacitors. RSC Adv 2019; 9:12555-12566. [PMID: 35515835 PMCID: PMC9063650 DOI: 10.1039/c9ra01539f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/10/2019] [Indexed: 11/21/2022] Open
Abstract
A simple method is demonstrated to prepare functionalized spongy graphene/hydrogenated titanium dioxide (FG-HTiO2) nanocomposites as interconnected, porous 3-dimensional (3D) network crinkly sheets. Such a 3D network structure provides better contact at the electrode/electrolyte interface and facilitates the charge transfer kinetics. The fabricated FG-HTiO2 was characterized by X-ray diffraction (XRD), FTIR, scanning electron microscopy (FESEM), Raman spectroscopy, thermogravimetric analysis (TGA), UV-Vis absorption spectroscopy, and transmission electron microscopy (TEM). The synthesized materials have been evaluated as supercapacitor materials in 0.5 M H2SO4 using cyclic voltammetry (CV) at different potential scan rates, and galvanostatic charge/discharge tests at different current densities. The FG-HTiO2 electrodes showed a maximum specific capacitance of 401 F g−1 at a scan rate of 1 mV s−1 and exhibited excellent cycling retention of 102% after 1000 cycles at 100 mV s−1. The energy density was 78.66 W h kg−1 with a power density of 466.9 W kg−1 at 0.8 A g−1. The improved supercapacitor performance could be attributed to the spongy graphene structure, adenine functionalization, and hydrogenated titanium dioxide. A simple method is demonstrated to prepare functionalized spongy graphene/hydrogenated titanium dioxide (FG-HTiO2) nanocomposites as interconnected, porous 3-dimensional (3D) network crinkly sheets.![]()
Collapse
Affiliation(s)
- Dalia M. El-Gendy
- Energy Materials Laboratory
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| | | | - Nageh K. Allam
- Energy Materials Laboratory
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| |
Collapse
|
32
|
Ramadan M, Abdellah AM, Mohamed SG, Allam NK. 3D Interconnected Binder-Free Electrospun MnO@C Nanofibers for Supercapacitor Devices. Sci Rep 2018; 8:7988. [PMID: 29789633 PMCID: PMC5964253 DOI: 10.1038/s41598-018-26370-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/11/2018] [Indexed: 11/09/2022] Open
Abstract
Rational design of binder-free materials with high cyclic stability and high conductivity is a great need for high performance supercapacitors. We demonstrate a facile one-step synthesis method of binder-free MnO@C nanofibers as electrodes for supercapacitor applications. The topology of the fabricated nanofibers was investigated using FESEM and HRTEM. The X-ray photoelectron spectroscopy (XPS) and the X-ray diffraction (XRD) analyses confirm the formation of the MnO structure. The electrospun MnO@C electrodes achieve high specific capacitance of 578 F/g at 1 A/g with an outstanding cycling performance. The electrodes also show 127% capacity increasing after 3000 cycles. An asymmetric supercapacitor composed of activated carbon as the negative electrode and MnO@C as the positive electrode shows an ultrahigh energy density of 35.5 Wh/kg with a power density of 1000 W/kg. The device shows a superior columbic efficiency, cycle life, and capacity retention.
Collapse
Affiliation(s)
- Mohamed Ramadan
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Ahmed M Abdellah
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Saad G Mohamed
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
33
|
Ismail FM, Ramadan M, Abdellah AM, Ismail I, Allam NK. Mesoporous spinel manganese zinc ferrite for high-performance supercapacitors. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|