1
|
Khand NH, Solangi AR, Shaikh H, Shah ZUH, Bhagat S, Sherazi STH, López-Maldonado EA. Novel electrochemical ZnO/MnO 2/rGO nanocomposite-based catalyst for simultaneous determination of hydroquinone and pyrocatechol. Mikrochim Acta 2024; 191:342. [PMID: 38795174 DOI: 10.1007/s00604-024-06416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/05/2024] [Indexed: 05/27/2024]
Abstract
An innovative electrochemical sensing method is introduced for dihydroxy benzene (DHB) isomers, specifically hydroquinone (HQ) and pyrocatechol (PCC), employing a zinc-oxide/manganese-oxide/reduced-graphene-oxide (ZnO/MnO2/rGO) nanocomposite (NC) as an electrode modifier material. Comprehensive characterization confirmed well-dispersed ZnO/MnO2 nanoparticles on rGO sheets. Electrochemical analysis revealed the ZnO/MnO2/rGO-NC-based modified electrode possesses low electrical resistance (126.2 Ω), high electrocatalytic activity, and rapid electron transport, attributed to the synergies between ZnO, MnO2 and rGO. The modified electrode demonstrated exceptional electrochemical performance in terms of selectivity for the simultaneous detection of HQ and PCC. Differential pulse voltammetry studies validated the proposed sensor's ability to detect HQ and PCC within linear response ranges of 0.01-115 μM and 0.03-60.53 μM, with detection limits of 0.0055 µM and 0.0053 µM, respectively. Practical validation using diverse water samples showcased excellent percent recovery of HQ and PCC using the ZnO/MnO2/rGO-based electrochemical sensor, underscoring the sensor's potential for real-world applications in environmental monitoring.
Collapse
Affiliation(s)
- Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Huma Shaikh
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Zia-Ul-Hassan Shah
- Department of Soil Science, Sindh Agriculture University, Tandojam, Pakistan
| | - Sanoober Bhagat
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Syed Tufail H Sherazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, 22390, Tijuana, Baja California, CA, CP, Mexico
| |
Collapse
|
2
|
Bao Y, Xing X, Huang H, Sun L, Song Z. Effect of alkaline environment on the electrochemical performance of manganese ferrate materials in lithium-ion battery cathode materials. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
A study on Ti-doped Fe 3O 4 anode for Li ion battery using machine learning, electrochemical and distribution function of relaxation times (DFRTs) analyses. Sci Rep 2022; 12:4851. [PMID: 35318363 PMCID: PMC8941007 DOI: 10.1038/s41598-022-08584-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Among many transition-metal oxides, Fe3O4 anode based lithium ion batteries (LIBs) have been well-investigated because of their high energy and high capacity. Iron is known for elemental abundance and is relatively environmentally friendly as well contains with low toxicity. However, LIBs based on Fe3O4 suffer from particle aggregation during charge–discharge processes that affects the cycling performance. This study conjectures that iron agglomeration and material performance could be affected by dopant choice, and improvements are sought with Fe3O4 nanoparticles doped with 0.2% Ti. The electrochemical measurements show a stable specific capacity of 450 mAh g−1 at 0.1 C rate for at least 100 cycles in Ti doped Fe3O4. The stability in discharge capacity for Ti doped Fe3O4 is achieved, arising from good electronic conductivity and stability in microstructure and crystal structure, which has been further confirmed by density functional theory (DFT) calculation. Detailed distribution function of relaxation times (DFRTs) analyses based on the impedance spectra reveal two different types of Li ion transport phenomena, which are closely related with the electron density difference near the two Fe-sites. Detailed analyses on EIS measurements using DFRTs for Ti doped Fe3O4 indicate that improvement in interfacial charge transfer processes between electrode and Li metal along with an intermediate lithiated phase helps to enhance the electrochemical performance.
Collapse
|
4
|
Choudhury BJ, Moholkar VS. Ultrasound-assisted facile one-pot synthesis of ternary MWCNT/MnO 2/rGO nanocomposite for high performance supercapacitors with commercial-level mass loadings. ULTRASONICS SONOCHEMISTRY 2022; 82:105896. [PMID: 34974391 PMCID: PMC8799621 DOI: 10.1016/j.ultsonch.2021.105896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Commercial application of supercapacitors (SCs) requires high mass loading electrodes simultaneously with high energy density and long cycle life. Herein, we have reported a ternary multi-walled carbon nanotube (MWCNT)/MnO2/reduced graphene oxide (rGO) nanocomposite for SCs with commercial-level mass loadings. The ternary nanocomposite was synthesized using a facile ultrasound-assisted one-pot method. The symmetric SC fabricated with ternary MWCNT/MnO2/rGO nanocomposite demonstrated marked enhancement in capacitive performance as compared to those with binary nanocomposites (MnO2/rGO and MnO2/MWCNT). The synergistic effect from simultaneous growth of MnO2 on the graphene and MWCNTs under ultrasonic irradiation resulted in the formation of a porous ternary structure with efficient ion diffusion channels and high electrochemically active surface area. The symmetric SC with commercial-level mass loading electrodes (∼12 mg cm-2) offered a high specific capacitance (314.6 F g-1) and energy density (21.1 W h kg-1 at 150 W kg-1) at a wide operating voltage of 1.5 V. Moreover, the SC exhibits no loss of capacitance after 5000 charge-discharge cycles showcasing excellent cycle life.
Collapse
Affiliation(s)
- Bhaskar J Choudhury
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Vijayanand S Moholkar
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
5
|
Choudhury BJ, Roy K, Moholkar VS. Improvement of Supercapacitor Performance through Enhanced Interfacial Interactions Induced by Sonication. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bhaskar J. Choudhury
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kuldeep Roy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Vijayanand S. Moholkar
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA. SnO 2-Doped ZnO/Reduced Graphene Oxide Nanocomposites: Synthesis, Characterization, and Improved Anticancer Activity via Oxidative Stress Pathway. Int J Nanomedicine 2021; 16:89-104. [PMID: 33447029 PMCID: PMC7802795 DOI: 10.2147/ijn.s285392] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Therapeutic selectivity and drug resistance are critical issues in cancer therapy. Currently, zinc oxide nanoparticles (ZnO NPs) hold considerable promise to tackle this problem due to their tunable physicochemical properties. This work was designed to prepare SnO2-doped ZnO NPs/reduced graphene oxide nanocomposites (SnO2-ZnO/rGO NCs) with enhanced anticancer activity and better biocompatibility than those of pure ZnO NPs. MATERIALS AND METHODS Pure ZnO NPs, SnO2-doped ZnO (SnO2-ZnO) NPs, and SnO2-ZnO/rGO NCs were prepared via a facile hydrothermal method. Prepared samples were characterized by field emission transmission electron microscopy (FETEM), energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectrometer, and dynamic light scattering (DLS) techniques. Selectivity and anticancer activity of prepared samples were assessed in human breast cancer (MCF-7) and human normal breast epithelial (MCF10A) cells. Possible mechanisms of anticancer activity of prepared samples were explored through oxidative stress pathway. RESULTS XRD spectra of SnO2-ZnO/rGO NCs confirmed the formation of single-phase of hexagonal wurtzite ZnO. High resolution TEM and SEM mapping showed homogenous distribution of SnO2 and rGO in ZnO NPs with high quality lattice fringes without any distortion. Band gap energy of SnO2-ZnO/rGO NCs was lower compared to SnO2-ZnO NPs and pure ZnO NPs. The SnO2-ZnO/rGO NCs exhibited significantly higher anticancer activity against MCF-7 cancer cells than those of SnO2-ZnO NPs and ZnO NPs. The SnO2-ZnO/rGO NCs induced apoptotic response through the upregulation of caspase-3 gene and depletion of mitochondrial membrane potential. Mechanistic study indicated that SnO2-ZnO/rGO NCs kill cancer cells through oxidative stress pathway. Moreover, biocompatibility of SnO2-ZnO/rGO NCs was also higher against normal breast epithelial (MCF10A cells) in comparison to SnO2-ZnO NPs and ZnO NPs. CONCLUSION SnO2-ZnO/rGO NCs showed enhanced anticancer activity and better biocompatibility than SnO2-ZnO NPs and pure ZnO NPs. This work suggested a new approach to improve the selectivity and anticancer activity of ZnO NPs. Studies on antitumor activity of SnO2-ZnO/rGO NCs in animal models are further warranted.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh11451, Saudi Arabia
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh11451, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| |
Collapse
|
7
|
Kim K, Park MJ. Ice-assisted synthesis of functional nanomaterials: the use of quasi-liquid layers as nanoreactors and reaction accelerators. NANOSCALE 2020; 12:14320-14338. [PMID: 32458875 DOI: 10.1039/d0nr02624g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The discovery of peculiar quasi-liquid layers on ice surfaces marks a major breakthrough in ice-related sciences, as the facile tuning of the reactions and morphologies of substances in contact with these layers make ice-assisted chemistry a low-cost, environmentally benign, and ubiquitous methodology for the synthesis of nanomaterials with improved functionality. Ice-templated synthesis of porous materials offers the appealing features of rapid self-organization and remarkable property changes arising from confinement effects and affords materials that have found a diverse range of applications such as batteries, supercapacitors, and gas separation. Moreover, much attention has been drawn to the acceleration of chemical reactions and transformations on the ice surface due to the freeze concentration effect, fast self-diffusion of surface water, and modulated surface potential energy. Some of these results are related to the accumulation of inorganic contaminants in glaciers and the blockage of natural gas pipelines. As an emerging theme in nanomaterial design, the dimension-controlled synthesis of hybrid materials with unprecedentedly enhanced properties on ice surfaces has attracted much interest. However, a deep understanding of quasi-liquid layer characteristics (and hence, the development of cutting-edge analytical technologies with high surface sensitivity) is required to achieve the current goal of ice-assisted chemistry, namely the preparation of tailor-made materials with the desired properties.
Collapse
Affiliation(s)
- Kyoungwook Kim
- Department of Chemistry, Division of Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784.
| | - Moon Jeong Park
- Department of Chemistry, Division of Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784.
| |
Collapse
|
8
|
Investigation of Cytotoxicity, Apoptosis, and Oxidative Stress Response of Fe 3O 4-RGO Nanocomposites in Human Liver HepG2 cells. MATERIALS 2020; 13:ma13030660. [PMID: 32024252 PMCID: PMC7040707 DOI: 10.3390/ma13030660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
Iron oxide–reduced graphene oxide (Fe3O4-RGO) nanocomposites have attracted enormous interest in the biomedical field. However, studies on biological response of Fe3O4-RGO nanocomposites at the cellular and molecular level are scarce. This study was designed to synthesize, characterize, and explore the cytotoxicity of Fe3O4-RGO nanocomposites in human liver (HepG2) cells. Potential mechanisms of cytotoxicity of Fe3O4-RGO nanocomposites were further explored through oxidative stress. Prepared samples were characterized by UV-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The results demonstrated that RGO induce dose-dependent cytotoxicity in HepG2 cells. However, Fe3O4-RGO nanocomposites were not toxic. We further noted that RGO induce apoptosis in HepG2 cells, as evidenced by mitochondrial membrane potential loss, higher caspase-3 enzyme activity, and cell cycle arrest. On the other hand, Fe3O4-RGO nanocomposites did not alter these apoptotic parameters. Moreover, we observed that RGO increases intracellular reactive oxygen species and hydrogen peroxide while decrease antioxidant glutathione. Again, Fe3O4-RGO nanocomposites did not exert oxidative stress. Altogether, we found that RGO significantly induced cytotoxicity, apoptosis and oxidative stress. However, Fe3O4-RGO nanocomposites showed good biocompatibility to HepG2 cells. This study warrants further research to investigate the biological response of Fe3O4-RGO nanocomposites at the gene and molecular level.
Collapse
|
9
|
Synergistically advancing Li storage property of hydrothermally grown 1D pristine MnO2 over a mesh-like interconnected framework of 2D graphene oxide. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04221-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Niu S, Wang Z, Yu M, Yu M, Xiu L, Wang S, Wu X, Qiu J. MXene-Based Electrode with Enhanced Pseudocapacitance and Volumetric Capacity for Power-Type and Ultra-Long Life Lithium Storage. ACS NANO 2018; 12:3928-3937. [PMID: 29589911 DOI: 10.1021/acsnano.8b01459] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Powerful yet thinner lithium-ion batteries (LIBs) are eagerly desired to meet the practical demands of electric vehicles and portable electronic devices. However, the use of soft carbon materials in current electrode design to improve the electrode conductivity and stability does not afford high volumetric capacity due to their low density and capacity for lithium storage. Herein, we report a strategy leveraging the MXene with superior conductivity and density to soft carbon as matrix and additive material for comprehensively enhancing the power capability, lifespan, and volumetric capacity of conversion-type anode. A kinetics favorable 2D nanohybrid with high conductivity, compact density, accumulated pseudocapacitance, and diffusion-controlled behavior is fabricated by coupling Ti3C2 MXene with high-density molybdenum carbide for fast lithium storage over 300 cycles with high capacities. By replacing the carbonaceous conductive agent with Ti3C2 MXene, the electrodes with better conductivity and dramatically reduced thickens could be further manufactured to achieve 37-40% improvement in capacity retention and ultra-long life of 5500 cycles with extremely slow capacity loss of 0.002% per cycle at high current rates. Ultrahigh volumetric capacity of 2460 mAh cm-3 could be attained by such MXene-based electrodes, highlighting the great promise of MXene in the development of high-performance LIBs.
Collapse
Affiliation(s)
- Shanshan Niu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering , Dalian University of Technology , Dalian 116024 , Liaoning , China
| | - Zhiyu Wang
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering , Dalian University of Technology , Dalian 116024 , Liaoning , China
| | - Mingliang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering , Dalian University of Technology , Dalian 116024 , Liaoning , China
| | - Mengzhou Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering , Dalian University of Technology , Dalian 116024 , Liaoning , China
| | - Luyang Xiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering , Dalian University of Technology , Dalian 116024 , Liaoning , China
| | - Song Wang
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering , Dalian University of Technology , Dalian 116024 , Liaoning , China
| | - Xianhong Wu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering , Dalian University of Technology , Dalian 116024 , Liaoning , China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering , Dalian University of Technology , Dalian 116024 , Liaoning , China
| |
Collapse
|
11
|
Lu L, Jing L, Yang Z, Yang G, Wang C, Wang J, Wang H, Jiang Q. One-step in situ growth of ZnS nanoparticles on reduced graphene oxides and their improved lithium storage performance using sodium carboxymethyl cellulose binder. RSC Adv 2018; 8:9125-9133. [PMID: 35541859 PMCID: PMC9078578 DOI: 10.1039/c8ra00470f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/23/2018] [Indexed: 12/04/2022] Open
Abstract
ZnS nanoparticles are in situ grown on reduced graphene oxides (rGO) via a simplified one-step hydrothermal method. Sodium carboxymethyl cellulose (CMC) is firstly applied as the binder for ZnS based anodes and shows a more advantageous binding effect than PVDF. To simplify the synthesis procedure, l-cysteine is added as the sulfur source for ZnS and simultaneously as the reducing agent for rGO. The average diameter of ZnS nanoparticles is measured to be 13.4 nm, and they uniformly disperse on the rGO sheets without any obvious aggregation. As anode materials, the CMC bound ZnS–rGO nanocomposites can maintain a high discharge capacity of 705 mA h g−1 at a current density of 500 mA g−1 for 150 cycles. The significantly improved electrochemical performance mainly derives from the combined effects of the small and uniformly dispersed ZnS nanoparticles, the high conductivity and structural flexibility of rGO and the strong binding ability of CMC. ZnS nanoparticles are in situ grown on reduced graphene oxides (rGO) via a simplified one-step hydrothermal method.![]()
Collapse
Affiliation(s)
- Lun Lu
- Key Laboratory of Automobile Materials of Ministry of Education
- Department of Materials Science and Engineering
- Jilin University
- Changchun 130025
- PR China
| | - Liwei Jing
- Institute of Scientific and Technical Information of Jilin Province
- Changchun
- PR China
| | - Zhizheng Yang
- Key Laboratory of Automobile Materials of Ministry of Education
- Department of Materials Science and Engineering
- Jilin University
- Changchun 130025
- PR China
| | - Guangyu Yang
- Key Laboratory of Automobile Materials of Ministry of Education
- Department of Materials Science and Engineering
- Jilin University
- Changchun 130025
- PR China
| | - Cheng Wang
- Key Laboratory of Automobile Materials of Ministry of Education
- Department of Materials Science and Engineering
- Jilin University
- Changchun 130025
- PR China
| | - Jinguo Wang
- Key Laboratory of Automobile Materials of Ministry of Education
- Department of Materials Science and Engineering
- Jilin University
- Changchun 130025
- PR China
| | - Huiyuan Wang
- Key Laboratory of Automobile Materials of Ministry of Education
- Department of Materials Science and Engineering
- Jilin University
- Changchun 130025
- PR China
| | - Qichuan Jiang
- Key Laboratory of Automobile Materials of Ministry of Education
- Department of Materials Science and Engineering
- Jilin University
- Changchun 130025
- PR China
| |
Collapse
|