1
|
Arif M, Raza H, Moussa SB, Alzahrani AYA, Akhter T. Poly(chitosan-N-vinylcaprolactam-methacrylic acid) microgels as microreactor for Ag(I) ions extraction and in-situ silver nanoparticles formation to reduce the toxins. Int J Biol Macromol 2024; 282:136906. [PMID: 39476896 DOI: 10.1016/j.ijbiomac.2024.136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
The toxicity of organic molecules and transition metal cations imposes their removal from aqueous medium to protect human health. Traditionally, systems have been designed to target either organic molecules or transition metal cations individually. However, a homogenous poly(chitosan-N-vinylcaprolactam-methacrylic acid) P(CVM) microgel system has been introduced to effectively eliminate both types of pollutants. This P(CVM) system was synthesized using the free radical precipitation polymerization (FRPP) method and employed as an adsorbent for the removal of silver (I) (Ag(I)) ions from aqueous medium under various environments, including different Ag(I) ions content, agitation times, pH levels, and dose of P(CVM). The extraction behavior of Ag(I) ions onto P(CVM) was analyzed using different adsorption isotherms, while the kinetics of the process were studied using Elovich model (ElM), pseudo-second-order (Ps2O), intra-particle-diffusion model (InPDM), and pseudo-first-order (Ps1O) models. Furthermore, silver nanoparticles (Ag NPs) were synthesized by using loaded Ag(I) ions within P(CVM) through in-situ reduction approach. The resulting Ag nanoparticles decorated P(CVM) (Ag-P(CVM)) hybrid microgels exhibited the ability to catalytically reduce various contaminants from water such as p-nitroaniline (PNiA), methyl red (MeR), chromium (VI) ions (CrM), and eosin Y (EoY). The catalytic activity was measured by determining the pseudo-first-order rate constant (kap), which were found to be 1.166 min-1, 0.562 min-1, 0.157 min-1, and 1.350 min-1 for the catalytic reduction of PNiA, MeR, CrM, and EoY, respectively. Overall, the Ag-P(CVM) system shows superb catalytic activity for various pollutants reduction.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Hamid Raza
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Sana Ben Moussa
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
2
|
Mabena KG, Nomngongo PN, Mketo N. Selective and precise solid phase extraction based on a magnetic cellulose gold nanocomposite followed by ICP-OES analysis for monitoring of total sulfur content in liquid fuels. RSC Adv 2024; 14:27990-27998. [PMID: 39224633 PMCID: PMC11367618 DOI: 10.1039/d4ra04427d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
This study describes the synthesis and characterization of a magnetic cellulose gold nanocomposite (MCNC@Au) for magnetic solid phase (m-SPE) extraction of total sulfur content in liquid fuel samples followed by analysis using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The nanocomposite was prepared using an in situ co-precipitation method and characterization results from FTIR, P-XRD, TEM and SEM-EDX techniques confirmed the formation of the targeted nanocomposite. To achieve good extraction efficiency, the 2-level half-fractional factorial design and central composite design were used to investigate the most influential parameters of the proposed m-SPE method. The multivariate optimization results showed that efficient extraction was obtained when 27.5 mg sorbent mass, 35 minutes sorption time, 200 μL eluent volume and 8 min elution time were used. The optimal parameters resulted in excellent accuracy (98.8%), precision (1.7%), LOD (0.039 mg L-1), LOQ (0.129 mg L-1), MDL (0.014 μg g-1) and MQL (0.047 μg g-1). The optimized and validated m-SPE method was applied in real fuel oil samples, revealing a total sulfur content range of 13.20 ± 0.05-15.70 ± 0.02 μg g-1 for crude oil, 7.32 ± 0.01-9.12 ± 0.03 for μg g-1, 8.41 ± 0.02-9.15 ± 0.06 μg g-1 for gasoline and 9.10 ± 0.02 and 9.70 ± 0.04 μg g-1 for kerosene samples, sugesting high concentration levels of sulfur in crude oils. However, the obtained sulfur content levels are within the accepted standards in fuel oils, except for those of crude oil and kerosene samples. Therefore, the proposed m-SPE method followed by ICP-OES analysis has proven to be an alternative procedure for rapid and selective quantification of total sulfur in fuel samples.
Collapse
Affiliation(s)
- Kgomotso G Mabena
- Department of Chemistry, College of Science, Engineering and Technology (CSET), University of South Africa Florida Science Campus 1709 Johannesburg South Africa +27-114712032
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, P.O. Box 17011 Johannesburg 2028 South Africa
| | - Nomvano Mketo
- Department of Chemistry, College of Science, Engineering and Technology (CSET), University of South Africa Florida Science Campus 1709 Johannesburg South Africa +27-114712032
| |
Collapse
|
3
|
Khalil A, Khan A, Kamal T, Khan AAP, Khan SB, Chani MTS, Alzahrani KA, Ali N. Zn/Al layered double hydroxide and carboxymethyl cellulose composite beads as support for the catalytic gold nanoparticles and their applications in the reduction of nitroarenes. Int J Biol Macromol 2024; 262:129986. [PMID: 38360231 DOI: 10.1016/j.ijbiomac.2024.129986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Until now, many efficient catalysts have been reported that are used for the reduction of nitroarenes. However, a catalyst reusability is a challenge that is often faced in practical environment. In this report, we designed a hydrogel composite (CMC-LDH), which act as support and making it possible to address this challenge. In this research work, zinc/aluminum based layered double hydroxides (Zn/Al LDH) have been assembled with carboxymethyl cellulose (CMC) to prepare CMC/LDH hydrogel beads. The CMC/LDH hydrogel beads were prepared by the ionotropic gelation method. For CMC/LDH/Au preparation, the already prepared CMC/LDH beads were kept in gold ion (Au3+) solution, and their subsequent reduction with sodium borohydride (NaBH4). For the characterization of the prepared samples different instrumental techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and scanning electron microscopy (SEM) were adopted. For the catalytic evaluation of CMC/LDH/Au, it was utilized as a catalyst in 4-NP and 4-NA reduction reactions. The continuity of the reaction was monitored by a UV-visible spectrophotometer. Rate constant (kapp) of 0.48474 min-1 and 0.7486 min-1 were obtained for 4-NP and 4-NA reduction, respectively. The hydrogel beads were recycled and reused for up to five successive cycles without significantly changing their catalytic efficiency.
Collapse
Affiliation(s)
- Ashi Khalil
- Institute of Chemical Sciences, University of Peshawar, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Pakistan
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry department, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Muhammad Tariq Saeed Chani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Khalid A Alzahrani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Chemistry department, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Pakistan.
| |
Collapse
|
4
|
El-Khouly AS, Takahashi Y. Synthesis, Characterization, and Evaluation of the Adsorption Behavior of Cellulose-Graft-Poly(Acrylonitrile-co-Acrylic Acid) and Cellulose-Graft-Poly(Acrylonitrile-co-Styrene) towards Ni(II) and Cu(II) Heavy Metals. Polymers (Basel) 2024; 16:445. [PMID: 38337334 DOI: 10.3390/polym16030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, the synthesis and characterization of grafted cellulose fiber with binary monomers mixture obtained using a KMnO4/citric acid redox initiator were investigated. Acrylonitrile (AN) was graft copolymerized with acrylic acid (AA) and styrene (Sty) at different monomer ratios with evaluating percent graft yield (GY%). Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were characterized by SEM, FT-IR, 13C CP MAS NMR, TGA, and XRD. An AN monomer was used as principle-acceptor monomer, and GY% increases with AN ratio up to 60% of total monomers mixture volume. The adsorption behaviors of Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were studied for the adsorption of Ni(II) and Cu(II) metal ions from aqueous solution. Optimal adsorption conditions were determined, including 8 h contact time, temperature of 30 °C, and pH 5.5. Cell-g-P(AN-co-AA) showed maximum adsorption capacity of 435.07 mg/g and 375.48 mg/g for Ni(II) and Cu(II), respectively, whereas Cell-g-P(AN-co-Sty) showed a maximum adsorption capacity of 379.2 mg/g and 349.68 mg/g for Ni(II) and Cu(II), respectively. Additionally, adsorption equilibrium isotherms were studied, and the results were consistent with the Langmuir model. The Langmuir model's high determinant coefficient (R2) predicted monolayer sorption of metal ions. Consequently, Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) prepared by a KMnO4/citric acid initiator were found to be efficient adsorbents for heavy metals from wastewater as an affordable and adequate alternative.
Collapse
Affiliation(s)
- Amany S El-Khouly
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Yoshiaki Takahashi
- Division of Advanced Device Materials, Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Japan
| |
Collapse
|
5
|
Yari-Ilkhchi A, Mahkam M, Ebrahimi-Kalan A, Zangbar HS. Design and synthesis of nano-biomaterials based on graphene and local delivery of cerebrolysin into the injured spinal cord of mice, promising neural restoration. NANOSCALE ADVANCES 2024; 6:990-1000. [PMID: 38298594 PMCID: PMC10825937 DOI: 10.1039/d3na00760j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Spinal cord injury (SCI) is an incurable and catastrophic health issue with no clinical solution. As part of cascade reactions, the inflammatory process and fibrous glial scar production aggravate the amount of lesion through a secondary damage mechanism, encouraging scientists from other disciplines to investigate new paths for solving this problem. Graphene oxide (GO) and its derivatives are among the most promising biomedical and nerve tissue regeneration materials due to their remarkable chemical, mechanical, and electrical properties. This paper designs and introduces a new GO-based nanomaterial to minimize inflammation and stimulate neurite regrowth. To improve biocompatibility, biodegradability, and cell proliferation, GO plates were modified with polyethylene glycol (PEG) and Au nanoparticles as neuroprotective and antibacterial agents, respectively. Preliminary biological investigations on bone marrow derived mesenchymal stem cells (BM-MSCs) with various concentrations of a graphenic nanocarrier indicated a lack of cell toxicity and an enhancement in BM-MSC proliferation of about 10% after 48 hours. Therapeutic nanostructures were used in the T10 segment of a mouse SCI model. The pathological and immunohistochemical data revealed that refilling tissue cavities, decreasing degeneration, and establishing neuroregeneration resulted in a considerable improvement of hind limb motor function. Furthermore, compared to the nanocomposite mixture alone, the intraspinal delivery of cerebrolysin (CRL) had a more satisfying impact on nerve regrowth, cystic cavity, hemorrhage avoidance, and motor function enhancement. This study demonstrates the potential of graphenic nanomaterials for SCI treatment and neuroregeneration applications.
Collapse
Affiliation(s)
- Ayda Yari-Ilkhchi
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University Tabriz Iran 5375171379
- Neuroscience Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences Tabriz Iran
| | - Mehrdad Mahkam
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University Tabriz Iran 5375171379
| | - Abbas Ebrahimi-Kalan
- Neuroscience Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences Tabriz Iran
| | - Hamid Soltani Zangbar
- Neuroscience Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
6
|
Zhou W, Sheng Y, Alizadeh A, Baghaei S, Lv Q, Shamsborhan M, Nasajpour-Esfahani N, Rezaie R. Synthesis and characterization of Alg/Gel/n-HAP/MNPs porous nanocomposite adsorbent for efficient water conservancy and removal of methylene blue in aqueous environments: Kinetic modeling and artificial neural network predictions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119446. [PMID: 37918240 DOI: 10.1016/j.jenvman.2023.119446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
In this study, a new porous nanocomposite adsorbent for water conservancy was synthesized using the freeze-drying technique to adsorb a cationic dye (Methylene Blue) in an aqueous environment. The nanocomposite adsorbent was synthesized using natural polymers, gelatin, and sodium alginate, and hydroxyapatite and magnetic iron oxide nanoparticles was incorporated into the polymer network to improve mechanical properties and increase the surface-to-volume ratio. To confirm the structure and morphology of the sample, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM) techniques were employed. In addition, the magnetic properties of the synthesis of MNPs and porous nanocomposite were determined using value stream mapping (VSM) and dynamic light scattering (DLS). The adsorption of Methylene Blue (MB) was studied as a function of effective physical and variable parameters, such as time, temperature, pH, and initial concentration. The synthesized porous nanocomposite adsorbent exhibited a high adsorption capacity of 473.2 mg g-1 and followed pseudo-second-order kinetics. Additionally, the maximum adsorption capacity was observed at an initial concentration of 534.9 mg g-1. The adsorbent was also sensitive to temperature changes and was well-described thermodynamically and isothermally by the Freundlich isotherm model. Two artificial neural networks (ANNs) were also developed to investigate the properties of the synthesized nanocomposites. In the first ANN, the properties of the nanocomposites, including pore size, porosity, compressive strength, and elastic modulus, were predicted based on the variations in the weight percentages of gelatin and hydroxyapatite. In the second ANN, the effects of changes in temperature and initial concentration on the adsorption of MB by the synthesized nanocomposite samples were predicted. The ANNs' predictions indicated that increasing the weight percentage of hydroxyapatite nanoparticles and gelatin enhances the physical, mechanical, and adsorption performance of the synthesized porous nanocomposites. The best results were achieved for the sample containing 40 wt % of gelatin and 30 wt % of hydroxyapatite nanoparticles. Furthermore, the ANN models demonstrated that increasing the temperature and initial concentration resulted in an increase in the amount of MB adsorbed.
Collapse
Affiliation(s)
- Wen Zhou
- School of Architecture and Engineering, Tongling University, Tongling, 244061, China.
| | - Yifei Sheng
- School of Engineering, University of Manchester, Manchester, United Kingdom
| | - As'ad Alizadeh
- Department of Civil Engineering, College of Engineering, Cihan University-Erbil, Erbil, Iraq
| | - Sh Baghaei
- Department of Mechanical Engineering, Islamic Azad University, Esfahan, Iran
| | - Qing Lv
- Chemical Engineering Department, Guangxi University, Nanning, 530000, China
| | - Mahmoud Shamsborhan
- Department of Mechanical Engineering, College of Engineering, University of Zakho, Zakho, Iraq
| | - Navid Nasajpour-Esfahani
- Department of Material Science and Engineering, Georgia Institute of Technology, Atlanta, 30332, USA
| | - R Rezaie
- Department of Mechanical Engineering, Islamic Azad University, Esfahan, Iran
| |
Collapse
|
7
|
Cyganowski P, Dzimitrowicz A, Marzec MM, Arabasz S, Sokołowski K, Lesniewicz A, Nowak S, Pohl P, Bernasik A, Jermakowicz-Bartkowiak D. Catalytic reductions of nitroaromatic compounds over heterogeneous catalysts with rhenium sub-nanostructures. Sci Rep 2023; 13:12789. [PMID: 37550421 PMCID: PMC10406812 DOI: 10.1038/s41598-023-39830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023] Open
Abstract
Nitroaromatic compounds (NACs) are key contaminants of anthropogenic origin and pose a severe threat to human and animal lives. Although the catalytic activities of Re nanostructures (NSs) are significantly higher than those of other heterogeneous catalysts containing NSs, few studies have been reported on the application of Re-based nanocatalysts for NAC hydrogenation. Accordingly, herein, catalytic reductions of nitrobenzene (NB), 4-nitrophenol (4-NP), 2-nitroaniline (2-NA), 4-nitroaniline (4-NA), and 2,4,6-trinitrophenol (2,4,6-TNP) over new Re-based heterogeneous catalysts were proposed. The catalytic materials were designed to enable effective syntheses and stabilisation of particularly small Re structures over them. Accordingly, catalytic hydrogenations of NACs under mild conditions were significantly enhanced by Re sub-nanostructures (Re-sub-NSs). The highest pseudo-first-order rate constants for NB, 4-NP, 2-NA, 4-NA, and 2,4,6-TNP reductions over the catalyst acquired by stabilising Re using bis(3-aminopropyl)amine (BAPA), which led to Re-sub-NSs with Re concentrations of 16.7 wt%, were 0.210, 0.130, 0.100, 0.180, and 0.090 min-1, respectively.
Collapse
Affiliation(s)
- Piotr Cyganowski
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wrocław, Poland.
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Mateusz M Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30-059, Kraków, Poland
| | - Sebastian Arabasz
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stablowicka 147, 54-066, Wrocław, Poland
| | - Krystian Sokołowski
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30-059, Kraków, Poland
| | - Anna Lesniewicz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Sylwia Nowak
- Laboratory of Microscopic Techniques, Faculty of Biological Sciences, University of Wroclaw, H. Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Andrzej Bernasik
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30-059, Kraków, Poland
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30-059, Kraków, Poland
| | - Dorota Jermakowicz-Bartkowiak
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze S. Wyspianskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
8
|
Synthesis of Chemically Modified Acid-Functionalized Multiwall Carbon Nanotubes with Benzimidazole for Removal of Lead and Cadmium Ions from Wastewater. Polymers (Basel) 2023; 15:polym15061421. [PMID: 36987202 PMCID: PMC10056040 DOI: 10.3390/polym15061421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
In this work, acid-functionalized multiwalled carbon (MWCNTs–CO2H) nanotube was successfully functionalized with a heterocyclic scaffold, namely benzimidazole, to give novel functionalized multiwalled carbon nanotubes (BI@MWCNTs). Then, FTIR, XRD, TEM, EDX, Raman spectroscopy, DLS, and BET analyses were used to characterize the synthesized BI@MWCNTs. The effectiveness of the adsorption of two heavy metal ions, Cd2+ and Pb2+, in single metal and mixed metal solutions on the prepared material was investigated. Influencing parameters for the adsorption method, for example duration, pH, starting metal concentration, and BI@MWCNT dosage, were examined for both metal ions. Moreover, adsorption equilibrium isotherms fit with the Langmuir and Freundlich models perfectly, while the intra-particle diffusion models provide pseudo-second order adsorption kinetics. The adsorption of Cd2+ and Pb2+ ions onto BI@MWCNTs revealed an endothermic and a spontaneous method with great affinity as a result of the negative values of Gibbs free energy (ΔG) and the positive values of enthalpy (ΔH) and entropy (ΔS). Both Pb2+ and Cd2+ ions were completely eliminated from aqueous solution (100 and 98%, respectively) using the prepared material. Additionally, BI@MWCNTs have a high adsorption capacity and were regenerated in a simple way and reused for six cycles, which make them a cost-effective and efficient absorbent for the removal of such heavy metal ions from wastewater.
Collapse
|
9
|
Singh VK, Kumar K, Das A, Tiwari R, Krishnamoorthi S. Ameliorated microgel for bimetallic Ag/CuO nanoparticles and their expeditious catalytic applications. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
10
|
The catalytic performance of CuFe 2O 4@CQD nanocomposite as a high-perform heterogeneous nanocatalyst in nitroaniline group reduction. Sci Rep 2023; 13:3329. [PMID: 36849500 PMCID: PMC9971249 DOI: 10.1038/s41598-023-28935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
In this study, we fabricated an economical, non-toxic, and convenient magnetic nanocomposite of CuFe2O4 nanoparticles (NPs)/carbon quantum dots (CQDs) of citric acid via the co-precipitation method. Afterward, obtained magnetic nanocomposite was used as a nanocatalyst to reduce the ortho-nitroaniline (o-NA) and para-nitroaniline (p-NA) using a reducer agent of sodium borohydride (NaBH4). To investigate the functional groups, crystallite, structure, morphology, and nanoparticle size of the prepared nanocomposite, FT-IR, XRD, TEM, BET, and SEM were employed. The catalytic performance of the nanocatalyst was experimentally evaluated based on the ultraviolet-visible absorbance to assess the reduction of o-NA and p-NA. The acquired outcomes illustrated that the prepared heterogeneous catalyst significantly enhanced the reduction of o-NA and p-NA substrates. The analysis of the absorption showed a remarkable decrease for ortho-NA and para-NA at λmax = 415 nm in 27 s and λmax = 380 nm in 8 s, respectively. The constant rate (kapp) of ortho-NA and para-NA at the stated λmax was 8.39 × 10-2 s-1 and 5.48 × 10-1 s-1. The most highlighted result of this work was that the CuFe2O4@CQD nanocomposite fabricated from citric acid performed better than absolute CuFe2O4 NPs, since nanocomposite containing CQDs had a more significant impact than copper ferrite NPs.
Collapse
|
11
|
Innovations in the synthesis of graphene nanostructures for bio and gas sensors. BIOMATERIALS ADVANCES 2023; 145:213234. [PMID: 36502548 DOI: 10.1016/j.bioadv.2022.213234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Sensors play a significant role in modern technologies and devices used in industries, hospitals, healthcare, nanotechnology, astronomy, and meteorology. Sensors based upon nanostructured materials have gained special attention due to their high sensitivity, precision accuracy, and feasibility. This review discusses the fabrication of graphene-based biosensors and gas sensors, which have highly efficient performance. Significant developments in the synthesis routes to fabricate graphene-based materials with improved structural and surface properties have boosted their utilization in sensing applications. The higher surface area, better conductivity, tunable structure, and atom-thick morphology of these hybrid materials have made them highly desirable for the fabrication of flexible and stable sensors. Many publications have reported various modification approaches to improve the selectivity of these materials. In the current work, a compact and informative review focusing on the most recent developments in graphene-based biosensors and gas sensors has been designed and delivered. The research community has provided a complete critical analysis of the most robust case studies from the latest fabrication routes to the most complex challenges. Some significant ideas and solutions have been proposed to overcome the limitations regarding the field of biosensors and hazardous gas sensors.
Collapse
|
12
|
Reduced Graphene Oxide-Zinc Sulfide Nanocomposite Decorated with Silver Nanoparticles for Wastewater Treatment by Adsorption, Photocatalysis and Antimicrobial Action. Molecules 2023; 28:molecules28030926. [PMID: 36770591 PMCID: PMC9920792 DOI: 10.3390/molecules28030926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Reduced graphene oxide nanosheets decorated with ZnS and ZnS-Ag nanoparticles are successfully prepared via a facile one-step chemical approach consisting of reducing the metal precursors on a rGO surface. Prepared rGO-ZnS nanocomposite is employed as an adsorbent material against two model dyes: malachite green (MG) and ethyl violet (EV). The adsorptive behavior of the nanocomposite was tuned by monitoring some parameters, such as the time of contact between the dye and the adsorbent, and the adsorbent dose. Experimental data were also simulated with kinetic models to evaluate the adsorption behavior, and the results confirmed that the adsorption of both dyes followed a pseudo 2nd order kinetic mode. Moreover, the adsorbent was also regenerated in a suitable media for both dyes (HCl for MG and ethanol for EV), without any significant loss in removal efficiency. Ag doped rGO-ZnS nanocomposite was also utilized as a photocatalyst for the degradation of the selected organic contaminant, resorcinol. The complete degradation of the phenolic compound was achieved after 60 min with 200 mg of rGO-ZnS-Ag nanocomposite under natural sunlight irradiation. The photocatalytic activity was studied considering some parameters, such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of resorcinol was carefully studied and found to follow a linear Langmuir-Hinshelwood model. An additional advantage of rGO-ZnS and rGO-ZnS-Ag nanocomposites was antibacterial activity against Gram-negative bacterium, E. coli, and the results confirmed the significant performance of the nanocomposites in destroying harmful pathogens.
Collapse
|
13
|
Robertson EJ, Tran Minh C. Tuning the Packing Density of Gold Nanoparticles in Peptoid Nanosheets Prepared at the Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13206-13216. [PMID: 36257063 DOI: 10.1021/acs.langmuir.2c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) arrays of gold nanoparticles that can freely float in water are promising materials for solution-based plasmonic applications like sensing. To be effective sensors, it is critical to control the interparticle gap distance and thus the plasmonic properties of the 2D arrays. Here, we demonstrate excellent control over the interparticle gap distance in a family of freely floating gold nanoparticle-embedded peptoid nanosheets. Nanosheets are made via monolayer assembly and collapse at the oil-water interface, allowing for fine control over the solution nanoparticle concentration during assembly. We used surface pressure measurements to monitor the assembly of the peptoid, nanoparticle, and combined system at the oil-water interface to determine a workable range of nanosheet assembly conditions suitable for controlling the interparticle gap distances within the nanosheets. These measurements revealed that the extent of nanoparticle adsorption to the peptoid monolayer can be tuned by varying the bulk nanoparticle concentration, but the ability for the monolayer to collapse into nanosheets is compromised at high nanoparticle concentrations. Peptoid nanosheets were synthesized with varying bulk nanoparticle concentrations and analyzed using light microscopy and UV-visible spectroscopy. Based on the spectral shift of the localized surface plasmon resonance peaks for the nanoparticles in the nanosheets relative to those well dispersed in toluene, we estimate that we can access interparticle gap distances within the nanosheet interior between 2.9 ± 0.5 and 9 ± 2 nm. Our results suggest that the minimum interparticle distance achievable by this method is limited by the nanoparticle ligand length, and so has the potential to be further tuned by varying the ligand chemical structure. The ability to quantitatively control and monitor the assembly conditions by this method provide an opportunity to readily tune the optoelectronic properties of this new class of 2D nanomaterial, making it a promising platform for plasmonic-based sensing applications.
Collapse
Affiliation(s)
- Ellen J Robertson
- Chemistry Department, Union College, 807 Union St., Schenectady, New York12308, United States
| | - Chau Tran Minh
- Chemistry Department, Union College, 807 Union St., Schenectady, New York12308, United States
| |
Collapse
|
14
|
Recent developments in the utilization of modified graphene oxide to adsorb dyes from water: A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Ghasemi M, Hasani Zonoozi M, Rezania N, Saadatpour M. Predicting coagulation-flocculation process for turbidity removal from water using graphene oxide: a comparative study on ANN, SVR, ANFIS, and RSM models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72839-72852. [PMID: 35616836 DOI: 10.1007/s11356-022-20989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Three artificial intelligence (AI) data-driven techniques, including artificial neural network (ANN), support vector regression (SVR), and adaptive neuro-fuzzy inference system (ANFIS), were applied for modeling and predicting turbidity removal from water using graphene oxide (GO). Based on partial mutual information (PIM) algorithm, pH, GO dosage, and initial turbidity were selected as the input variables for developing the models. The prediction performance of the AI-based models was compared with each other and with the response surface methodology (RSM) model, previously reported by the authors, as well. The models' estimation accuracy was assessed through statistical measures, including mean-squared error (MSE), root-mean-square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). Among the evaluated models, ANN had the highest estimation accuracy as it showed the highest R2 for the validation data (0.949) and the lowest MSE, RMSE, and MAE values. Furthermore, ANN predicted 76.1% of data points with relative errors (RE) less than 10%. In contrast, the weakest prediction performance belonged to the SVR model with the lowest R2 for both calibration (0.712) and validation (0.864) data. Besides, only 57.1% of the SVR's predictions were characterized by RE < 10%. The ANFIS and RSM models exhibited a more or less similar performance in terms of R2 for the validation data (0.877 and 0.871, respectively) and other statistical parameters. According to the results, the ANN technique is proposed as the best option for modeling the process. Nevertheless, as the RSM technique provides valuable information about the contribution of the independent operational parameters and their complex interaction effects using the least number of experiments, simulating the process by this technique before modeling by ANN is inevitable.
Collapse
Affiliation(s)
- Mahdi Ghasemi
- Department of Civil Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Maryam Hasani Zonoozi
- Department of Civil Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran.
| | - Nazila Rezania
- Department of Civil Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Motahareh Saadatpour
- Department of Civil Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| |
Collapse
|
16
|
Al-Faiyz YSS, Gouda M. Multi-Walled Carbon Nanotubes Functionalized with Hydroxamic Acid Derivatives for the Removal of Lead from Wastewater: Kinetics, Isotherm, and Thermodynamic Studies. Polymers (Basel) 2022; 14:polym14183870. [PMID: 36146015 PMCID: PMC9504277 DOI: 10.3390/polym14183870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022] Open
Abstract
Hydroxamic acids are recognized chelators for various metals; however, using them as functional groups on carbon nanotubes (CNTs) is rare. In this study, novel multi-walled carbon nanotubes (MWCNTs) functionalized with hydroxamic acid derivatives were developed. The MWCNTs were first oxidized, and the resulting product, MWCNT-COOH (A), was treated with oxalyl chloride to yield MWCNT-COCl. The functionalized MWCNTs were susceptible to reacting with the hydroxylamine derivatives of type R–NHOH and produced MWCNTs functionalized with the following hydroxamic acid derivatives (MWCNT-HA): MWCNT-CONOHMe (B), MWCNT-CONOHCOMe(C), and MWCNT-CONOHPh (D). The synthesized derivatives were confirmed by various techniques such as scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. In order to examine their chelation ability, these materials were examined as possible new adsorbents for harmful Pb(II) particles. The adsorption efficiency of the functionalized MWCNT adsorbents toward Pb(II) was investigated. The effects of the adsorbent dose, temperature, pH, and time on adsorption efficiency were considered, and adsorption boundaries that resulted in enhanced effectiveness were obtained. The developed materials were found to have extraordinary coordination sites, such as amine, hydroxyl, and carboxyl groups, which served as excellent chelating specialists for the Pb(II) particles. Thermodynamic and kinetic investigations revealed the unconstrained nature of the adsorption of Pb(II) by the developed MWCNT adsorbents at room temperature. The adsorption was noted to follow the pseudo-second-order and Langmuir isotherm models.
Collapse
|
17
|
Safitri H, Wahyuni WT, Rohaeti E, Khalil M, Marken F. Optimization of uric acid detection with Au nanorod-decorated graphene oxide (GO/AuNR) using response surface methodology. RSC Adv 2022; 12:25269-25278. [PMID: 36199297 PMCID: PMC9450001 DOI: 10.1039/d2ra03782c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
A modified glassy carbon electrode (GCE) was developed based on a synthesized graphene oxide (GO) gold nanorod (AuNR) decorated composite (GO/AuNR) for sensitive electrochemical sensing of uric acid (UA). The electrochemical performance of GO/AuNR/GCE for UA detection was investigated employing the differential pulse voltammetry (DPV) technique. Central composite design (CCD) was applied to obtain the optimum composition of the GO and AuNR composite, which provide the highest possible UA oxidation peak current. The optimum composition was obtained at a GO concentration of 5 mg mL-1 and AuNR volume of 10 mL. Under the optimum conditions, GO/AuNR/GCE showed acceptable analytical performance for UA detection with good linearity (concentration range of 10-90 μM) and both a low detection limit (0.4 μM) and quantitation limit (1.0 μM). Furthermore, the proposed sensor exhibits superior stability, reproducibility, and selectivity using ascorbic acid (AA), dopamine (DA), urea, glucose, and magnesium as interferents. Finally, practical use of GO/AuNR/GCE was demonstrated by successfully determining the content of UA in human urine samples with the standard addition approach.
Collapse
Affiliation(s)
- Hana Safitri
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University Indonesia
| | - Wulan Tri Wahyuni
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University Indonesia
- Tropical Biopharmaca Research Center, Institute of Research and Community Empowerment, IPB University Indonesia
| | - Eti Rohaeti
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University Indonesia
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia Depok 16424 Indonesia
| | | |
Collapse
|
18
|
Najafi M, Bastami TR, Binesh N, Ayati A, Emamverdi S. Sono-sorption versus adsorption for the removal of congo red from aqueous solution using NiFeLDH/Au nanocomposite: Kinetics, thermodynamics, isotherm studies, and optimization of process parameters. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Mal D, Alveroglu E, Balouch A, Jagirani MS, Kumar S. Highly efficient and selective heterogeneous catalytic reduction of 2-nitroaniline by cerium oxide nanocatalyst under microwave irradiation. ENVIRONMENTAL TECHNOLOGY 2022; 43:3631-3645. [PMID: 33979265 DOI: 10.1080/09593330.2021.1929506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Efficient nanocatalyst with incredible performance is highly demanding in a heterogeneous catalysis system. Herein, we report the facile fabrication of uniform and highly stable Cerium Oxide nanoparticles (CeO2 NPs), through chemical precipitation method using sodium hydroxide as reducing agent. The synthesized material is characterized through highly sophisticated techniques including UV-Visible, FT-IR, SEM, AFM, XRD, and Zeta Sizer- Potential to check the particle formation, surface morphology, topography, crystalline nature, size, and surface potential. The heterogeneous catalytic performance of CeO2 NPs has been accomplished for the reduction of 2-nitroaniline from the aqueous media. The CeO2 nanocatalyst displayed excellent reusability, while the reduction in several repetitive catalytic cycles against 2-nitroaniline under optimized conditions. The CeO2 nanocatalyst shows 99.12% efficiency within 60s reaction time under a greener source of microwave radiation.
Collapse
Affiliation(s)
- Dadu Mal
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Pakistan
| | - Esra Alveroglu
- Istanbul Technical University, Faculty of Science and Letters, Department of Physics Engineering Maslak, Istanbul, Turkey
| | - Aamna Balouch
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Pakistan
- Istanbul Technical University, Faculty of Science and Letters, Department of Physics Engineering Maslak, Istanbul, Turkey
| | - Muhammad Saqaf Jagirani
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Pakistan
| | - Sagar Kumar
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Pakistan
| |
Collapse
|
20
|
Gollavelli G, Ghule AV, Ling YC. Multimodal Imaging and Phototherapy of Cancer and Bacterial Infection by Graphene and Related Nanocomposites. Molecules 2022; 27:5588. [PMID: 36080351 PMCID: PMC9457605 DOI: 10.3390/molecules27175588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/31/2022] Open
Abstract
The advancements in nanotechnology and nanomedicine are projected to solve many glitches in medicine, especially in the fields of cancer and infectious diseases, which are ranked in the top five most dangerous deadly diseases worldwide by the WHO. There is great concern to eradicate these problems with accurate diagnosis and therapies. Among many developed therapeutic models, near infra-red mediated phototherapy is a non-invasive technique used to invade many persistent tumors and bacterial infections with less inflammation compared with traditional therapeutic models such as radiation therapy, chemotherapy, and surgeries. Herein, we firstly summarize the up-to-date research on graphene phototheranostics for a better understanding of this field of research. We discuss the preparation and functionalization of graphene nanomaterials with various biocompatible components, such as metals, metal oxides, polymers, photosensitizers, and drugs, through covalent and noncovalent approaches. The multifunctional nanographene is used to diagnose the disease with confocal laser scanning microscopy, magnetic resonance imaging computed tomography, positron emission tomography, photoacoustic imaging, Raman, and ToF-SMIS to visualize inside the biological system for imaging-guided therapy are discussed. Further, treatment of disease by photothermal and photodynamic therapies against different cancers and bacterial infections are carefully conferred herein along with challenges and future perspectives.
Collapse
Affiliation(s)
- Ganesh Gollavelli
- Department of Humanities and Basic Sciences, Aditya Engineering College, Surampalem, Jawaharlal Nehru Technological University Kakinada, Kakinada 533437, Andhra Pradesh, India
| | - Anil V. Ghule
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
21
|
Zhang S, Malik S, Ali N, Khan A, Bilal M, Rasool K. Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Top Curr Chem (Cham) 2022; 380:44. [PMID: 35951126 PMCID: PMC9372017 DOI: 10.1007/s41061-022-00397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022]
Abstract
Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sumeet Malik
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 5824, Doha, Qatar.
| |
Collapse
|
22
|
Saeed SR, Ajmal M, Bibi I, Shah SS, Siddiq M. Synthesis and characterization of SiO 2-NiO xerogel nanocomposite prepared by sol–gel method for catalytic reduction of p-nitrophenol. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2073541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Syed Rashid Saeed
- Department of Chemistry, Hazara University Mansehra, Khyber-Pukhtoonkhwa, Pakistan
| | - Muhammad Ajmal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Iram Bibi
- Department of Chemistry, Hazara University Mansehra, Khyber-Pukhtoonkhwa, Pakistan
| | - Syed Sakhawat Shah
- Department of Chemistry, Hazara University Mansehra, Khyber-Pukhtoonkhwa, Pakistan
- Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad Pakistan
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad Pakistan
| |
Collapse
|
23
|
Nawaz I, Shehzad H, Ahmed E, Sharif A, Farooqi ZH, Din MI, Begum R, Irfan A, Liu Z, Zhou L, Ouyang J. Facile synthesis and adsorption characteristics of a hybrid composite based on ethyl acetoacetate modified chitosan/calcium alginate/TiO 2 for efficient recovery of Ni(II) from aqueous solution. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, chemical modification of chitosan has been carried out using epichlorohydrin as crosslinking agent and ethyl acetoacetate as a modifier to graft acetoacetyl moiety. The said organo-functionalization on chitosan and sodium alginate not only offered a novel support for TiO2 immobilization but also enhanced sorption performance for Ni(II) recovery from aqueous medium. So, a composite consisting of acetoacetyl moiety grafted chitosan, sodium alginate and titanium oxide (EAA-MCS/TiO2) was prepared and characterized by fourier transform-infra red (FT-IR) spectroscopy and scanning electron microscopy (SEM). The hybrid composite (3EAA-MCS/TiO2) which had TiO2 to EAA-MCS mass ratio of 20.0% by weight showed maximum sorption efficiency. The formulated sorbent was conditioned in the form of hydrogel beads for operation. Isothermal sorption and kinetics studies were performed at pH = 6.0 to configure the nature of sorption. Pseudo-2nd order rate expression better explained the sorption kinetics and chemisorption is the predominant mode of uptake. Langmuir adsorption model better explained the sorption process (R
2 ∼ 0.99) and maximum monolayer sorption capacity (q
m
) at sorption/desorption dynamic equilibrium was computed as 403 mg/g at optimized pH.
Collapse
Affiliation(s)
- Imran Nawaz
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Hamza Shehzad
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Ejaz Ahmed
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Ahsan Sharif
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Zahoor H. Farooqi
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Muhammad Imran Din
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Robina Begum
- School of Chemistry , University of the Punjab , Lahore 54590 , Pakistan
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science , King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia
- Research Center for Advanced Materials Science, King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia
| | - Zhirong Liu
- School of Chemistry, Biology and Material Sciences , East China University of Technology , Nanchang , P. R. China
| | - Limin Zhou
- School of Chemistry, Biology and Material Sciences , East China University of Technology , Nanchang , P. R. China
| | - Jinbo Ouyang
- School of Chemistry, Biology and Material Sciences , East China University of Technology , Nanchang , P. R. China
| |
Collapse
|
24
|
Kim H, Son HM, Lee HK. Characterization of bio-adsorptive removal performance of strontium through ureolysis-mediated bio-mineralization. CHEMOSPHERE 2022; 288:132586. [PMID: 34718026 DOI: 10.1016/j.chemosphere.2021.132586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The adsorptive removal performance of strontium (Sr) through bio-mineralization metabolism under various parameters was evaluated in this study. The primary mechanism of bio-mineralization used in this study was the urea hydrolysis process through bacterial enzymatic catalysis. Bacillus sp, which was isolated from river sediment, was used as a ureolytic bacteria. Various environmental conditions were set as different initial concentrations of Sr (10, 50, 100, 200, and 500 mg/L), and various ratios of Mg/Ca (4, 2, 1, 0.5, and 0.25). The concentrations of Sr2+, Ca2+, and Mg2+ in the solution of the batch experiment were measured to identify the bio-mineralization performance and the removal rate of Sr. In addition, the main Sr removal mechanism of ureolytic bacteria was identified. As a result, for Sr removal of bacteria, the bio-mineralization mechanism was more predominant than the adsorption of Sr. The rapid growth and high nucleation site production were observed when the initial concentration of Sr2+ increased and the Mg/Ca ratio was lowered, resulting in high biomineralization performance and Sr removal rate. The main phases of carbonate minerals formed in the presence of Sr, Ca, and Mg were SrCO3 and SrCa(CO3)2. Mg2+ could retard the bacterial growth and participate in the formation of carbonate minerals, when a large amount of Mg2+ was present. Furthermore, the desorption rate of Sr2+ from bacterial pastes containing the carbonate minerals increased as the concentration of HCl increased, although the carbonate minerals were in a stable state.
Collapse
Affiliation(s)
- Hayeon Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - H M Son
- Device Solutions, Samsung Electronics, Samsungjeonja-ro 1, Hwaseong-si, Gyeonggi-do, 18448, South Korea
| | - H K Lee
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| |
Collapse
|
25
|
Qamar SA, Qamar M, Basharat A, Bilal M, Cheng H, Iqbal HMN. Alginate-based nano-adsorbent materials - Bioinspired solution to mitigate hazardous environmental pollutants. CHEMOSPHERE 2022; 288:132618. [PMID: 34678347 DOI: 10.1016/j.chemosphere.2021.132618] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Population growth and industrialization is associated with the elevation of hazardous pollutants, including heavy metals, biomedical wastes, personal-care products, endocrine-disrupters, pharmaceutically active compounds, and colorants in the environment. The scientific focus has been devoted to developing novel adsorbents to mitigate hazardous pollutants by constructing hybrids of different polymers and nano-structured materials for improved workability and physicochemical attributes. Recently, much attention has been devoted to nanomaterials in environmental remediation, owning to their exceptional characteristics including novel electrical/chemical features, quantum size effects, tunable functionalization, high scalability, and surface-area-to-volume ratio. Target-specific designing of nanocomposites impart high functionality. The cost-effective and eco-friendly synthesis of bioadsorbent materials is increasing for the removal of hazardous pollutants. Due to biocompatible, biodegradable, and eco-friendly nature, sodium alginate has been widely reported for the preparation of bioadsorbent materials to remove different inorganic/organic pollutants. In this review, the potentialities of alginate-based nanocomposites have been described for environmental remediation purposes. Different nanomaterials, including silica, metallic oxide, graphene oxide, hybrid inorganic-organic, non-magnetic-magnetic, carbon nanorods, nanotubes, polymeric nanocarriers, and several other materials have been described in combination with alginate biopolymer for environmental remediation.
Collapse
Affiliation(s)
- Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
26
|
Naeem H, Ajmal M, Khatoon F, Siddiq M, Khan GS. Synthesis of graphene oxide–metal nanoparticle nanocomposites for catalytic reduction of nitrocompounds in aqueous medium. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.1991736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hina Naeem
- Department of Chemistry, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Muhammad Ajmal
- Department of Chemistry, University of Education, Attock Campus., Attock, Pakistan
| | - Fatima Khatoon
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Gul Shahzada Khan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Bahrain
| |
Collapse
|
27
|
Srivastava V, Zare EN, Makvandi P, Zheng XQ, Iftekhar S, Wu A, Padil VVT, Mokhtari B, Varma RS, Tay FR, Sillanpaa M. Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents. CHEMOSPHERE 2020; 258:127324. [PMID: 32544812 DOI: 10.1016/j.chemosphere.2020.127324] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Water is an extremely essential compound for human life and, hence, accessing drinking water is very important all over the world. Nowadays, due to the urbanization and industrialization, several noxious pollutants are discharged into water. Water pollution by various cytotoxic contaminants, e.g. heavy metal ions, drugs, pesticides, dyes, residues a drastic public health issue for human beings; hence, this topic has been receiving much attention for the specific approaches and technologies to remove hazardous contaminants from water and wastewater. In the current review, the cytotoxicity of different sorts of aquatic pollutants for mammalian is presented. In addition, we will overview the recent advances in various nanocomposite-based adsorbents and different approaches of pollutants removal from water/wastewater with several examples to provide a backdrop for future research.
Collapse
Affiliation(s)
- Varsha Srivastava
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University (B.H.U), Varasani 221005, India
| | | | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran; Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Xuan-Qi Zheng
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Sidra Iftekhar
- Department of Environmental Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan
| | - Aimin Wu
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Vinod V T Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117 Liberec 1, Czech Republic
| | - Babak Mokhtari
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, USA
| | - Mika Sillanpaa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350 QLD, Australia; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
28
|
Photocatalytic hydrogel layer supported on alkali modified straw fibers for ciprofloxacin removal from water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Mei X, Wang Y, Yang Y, Xu L, Wang Y, Guo Z, Shen W, Zhang Z, Ma M, Ding Y, Xiao Y, Yang X, Yin C, Guo W, Xu K, Wang C. Enhanced treatment of nitroaniline-containing wastewater by a membrane-aerated biofilm reactor: Simultaneous nitroaniline degradation and nitrogen removal. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Coşkuner Filiz B. The role of catalyst support on activity of copper oxide nanoparticles for reduction of 4-nitrophenol. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Mei X, Ding Y, Wang Y, Yang Y, Xu L, Wang Y, Shen W, Zhang Z, Ma M, Guo Z, Xiao Y, Yang X, Zhou B, Xu K, Guo W, Wang C. A novel membrane-aerated biofilter for the enhanced treatment of nitroaniline wastewater: Nitroaniline biodegradation performance and its influencing factors. BIORESOURCE TECHNOLOGY 2020; 307:123241. [PMID: 32244078 DOI: 10.1016/j.biortech.2020.123241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Nitroaniline (NA) wastewater is known to be highly toxic and biodegradation-resistant. Based on the principles of molecular oxygen supply and biofilm formation, a novel membrane-aerated biofilter (MABF) combining membrane aeration with a biofilter was established for the first time to treat NA wastewater containing the same concentrations of p-nitroaniline (PNA) and o-nitroaniline (ONA). The NA wastewater treatment performance of the MABF was investigated, and the NA biodegradation characteristics were evaluated. When the influent NA concentration was 120 mg/L, the PNA and ONA removal rates reached 100% and 86.56%, respectively. The NA removal loading reached 111.62 g/m3·d, and the total nitrogen (TN) removal rate reached 82.97%. The synergistic effects of the diverse microorganisms in the membrane-aerated and nonaerated zones of the MABF enhanced the removal of NA and nitrogen. This MABF is an economically efficient and environmentally friendly technology for treating wastewater containing toxic and hazardous organic compounds.
Collapse
Affiliation(s)
- Xiang Mei
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Ding
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yihan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wentian Shen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zimiao Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mengyuan Ma
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongwei Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yanyan Xiao
- Nanjing Haiyi Environmental Protection Engineering Co., Ltd., Nanjing 211200, China
| | - Xu Yang
- Nanjing Haiyi Environmental Protection Engineering Co., Ltd., Nanjing 211200, China
| | - Baochang Zhou
- Nanjing RGE Membrane Tech Co., Ltd., Nanjing 210012, China
| | - Kang Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chaofan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
32
|
Elessawy NA, Gouda MH, M. Ali S, Salerno M, Eldin MSM. Effective Elimination of Contaminant Antibiotics Using High-Surface-Area Magnetic-Functionalized Graphene Nanocomposites Developed from Plastic Waste. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1517. [PMID: 32224957 PMCID: PMC7177265 DOI: 10.3390/ma13071517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
The presence of pharmaceutical residues in aquatic environments represents a risk for the equilibrium of the ecosystem and may seriously affect human safety itself in the long term. To address this issue, we have synthesized functional materials based on highly-reduced graphene oxide (HRGO), sulfonated graphene (SG), and magnetic sulfonated graphene (MSG). The method of synthesis adopted is simple and inexpensive and makes use of plastic bottle waste as the raw material. We have tested the fabricated materials for their adsorption efficiency against two model antibiotics in aqueous solutions, namely Garamycin and Ampicillin. Our tests involved the optimization of different experimental parameters of the adsorption process, such as starting antibiotic concentration, amount of adsorbent, and time. Finally, we characterized the effect of the antibiotic adsorption process on common living organisms, namely Escherichia coli DH5α (E. coli DH5α) bacteria. The results obtained demonstrate the efficiency of the method in addressing the issue of the emergence of antibiotic-resistant bacteria, which will help in preventing changes in the ecosystem.
Collapse
Affiliation(s)
- Noha A. Elessawy
- Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - M. H. Gouda
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt; (M.H.G.); (M.S.M.E.)
| | - Safaa M. Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications (SRTA, City), New Borg El-Arab, Alexandria 21934, Egypt;
| | - M. Salerno
- Materials Characterization Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| | - M. S. Mohy Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt; (M.H.G.); (M.S.M.E.)
| |
Collapse
|
33
|
Nasrollahzadeh M, Nezafat Z, Gorab MG, Sajjadi M. Recent progresses in graphene-based (photo)catalysts for reduction of nitro compounds. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110758] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Gusain R, Kumar N, Ray SS. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213111] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Baig N, Sajid M, Saleh TA. Graphene-based adsorbents for the removal of toxic organic pollutants: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 244:370-382. [PMID: 31132618 DOI: 10.1016/j.jenvman.2019.05.047] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/23/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The synthesis and application of efficient materials for remediation of environmental contaminants from water is an emerging area of research. Graphene has received tremendous attention in various fields due to its exceptional properties. Graphene and its derivatives have also been extensively explored for the adsorptive removal of pollutants from water. The recent trends are inclined toward functionalization of graphene-based materials to get the advantage of their improved properties. The functionalized graphene materials are efficient due to their enhanced properties resulting from synergistic effects. This article reviews the synthesis and application of graphene-based adsorbents for the removal of organic pollutants from water. A critical account is provided on synthesis methods, applications, adsorption mechanisms, the figure of merits, and removal performances. The accomplishments, limitations, challenges, and future research directions are also highlighted.
Collapse
Affiliation(s)
- Nadeem Baig
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
36
|
Siong VLE, Lee KM, Juan JC, Lai CW, Tai XH, Khe CS. Removal of methylene blue dye by solvothermally reduced graphene oxide: a metal-free adsorption and photodegradation method. RSC Adv 2019; 9:37686-37695. [PMID: 35542257 PMCID: PMC9075724 DOI: 10.1039/c9ra05793e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, reduced graphene oxide (rGO) was fabricated at different reduction temperatures via an environmentally friendly solvothermal approach. The rGO formed at 160 °C clearly showed the partial restoration of the sp2 hybridization brought about by the elimination of oxygenated functionalities from the surface. Owing to the augmented surface area and the band gap reduction, rGO-160 exhibited the best adsorption (29.26%) and photocatalytic activity (32.68%) towards the removal of MB dye. The effects of catalyst loading, initial concentration of dye, light intensity, and initial pH of solution were evaluated. It was demonstrated that rGO-160 could achieve a higher adsorptive removal (87.39%) and photocatalytic degradation (98.57%) of MB dye when 60 mg of catalyst, 50 ppm of dye at pH 11, and 60 W m−2 of UV-C light source were used. The MB photodegradation activity of rGO-160 displayed no obvious decrease after five successive cycles. This study provides a potential metal-free adsorbent-cum-photocatalyst for the decontamination of dyes from wastewater. A metal-free MB dye removal process was carried out by solvothermally synthesized rGO. After optimization, near-complete dye removal was achieved via an adsorption and UV photodegradation route.![]()
Collapse
Affiliation(s)
- Valerie Ling Er Siong
- Nanotechnology & Catalysis Research Centre
- Institute for Advanced Studies
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Kian Mun Lee
- Nanotechnology & Catalysis Research Centre
- Institute for Advanced Studies
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre
- Institute for Advanced Studies
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre
- Institute for Advanced Studies
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Xin Hong Tai
- Nanotechnology & Catalysis Research Centre
- Institute for Advanced Studies
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Cheng Seong Khe
- Department of Fundamental and Applied Sciences
- Universiti Teknologi PETRONAS
- Malaysia
| |
Collapse
|
37
|
Naseem K, Farooqi ZH, Begum R, Rehman MZU, Shahbaz A, Farooq U, Ali M, Rahman HMAU, Irfan A, Al-Sehemi AG. Removal of Cadmium (II) from Aqueous Medium Using Vigna radiata Leave Biomass: Equilibrium Isotherms, Kinetics and Thermodynamics. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2018-1223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present study, a novel biosorbent Vigna radiata leaves biomass (L. biomass) was utilized for cadmium (II) extraction from aqueous medium. Cadmium (II) free and cadmium (II) loaded L. biomass was analyzed by Fourier transform infrared (FTIR) spectroscopy. Adsorption of cadmium (II) from aqueous medium was studied under various conditions such as adsorbent dose, agitation time, pH and temperature of the medium to optimize the process variables. Different models including Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (DR) were used to elaborate the insight of adsorption process. Best interpretation of biosorption process was given by Langmuir model. Value of maximum adsorption capacity (qm) calculated from Langmuir isotherm model was found to be 13.44 mg/g. Results indicated the establishment of physical interaction between cadmium (II) ions and functional groups of L. biomass. Kinetic study for adsorption of cadmium (II) ions on L. biomass was done by applying pseudo first order, pseudo second order, elovich and intra-particles diffusion models. Biosorption process best followed the pseudo second order kinetics. Value of standard Gibbs energy (ΔG°) and standard enthalpy change (ΔH°) showed the feasibility, spontaneity and endothermic nature of adsorption process. Percentage removal efficiency of L. biomass for cadmium (II) was successfully maintained for four cycles. Biomass has a potential to be used as an efficient adsorbent for the removal of cadmium (II) from different polluted water samples.
Collapse
Affiliation(s)
- Khalida Naseem
- Institute of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan
| | - Zahoor H. Farooqi
- Institute of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan , Tel.: +92-42-9230463 (off.) Ext. 817, Fax: 92-42-9231269, e-mail:
| | - Robina Begum
- Center for Undergraduate Studies, University of the Punjab , New Campus, Lahore 54590 , Pakistan
| | - Muhammad Zia Ur Rehman
- Department of Chemical Engineering , University of Engineering and Technology , Lahore 54890 , Pakistan
| | - Aiman Shahbaz
- Department of Chemistry , Kinnaird College for Women , Lahore 54000 , Pakistan
| | - Umar Farooq
- Institute of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan
| | - Muhammad Ali
- Institute of Agriculture Sciences, University of the Punjab , Lahore 54590 , Pakistan
| | | | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia ; Department of Chemistry , Faculty of Science, King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia ; Department of Chemistry , Faculty of Science, King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia
| |
Collapse
|
38
|
Odoemelam SA, Emeh UN, Eddy NO. Experimental and computational chemistry studies on the removal of methylene blue and malachite green dyes from aqueous solution by neem (Azadirachta indica) leaves. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1080/16583655.2018.1465725] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Stevens A. Odoemelam
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Ugbomma Ngozi Emeh
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | | |
Collapse
|