1
|
Pan F, Altenried S, Scheibler S, Ren Q. A rapid and specific antimicrobial resistance detection of Escherichia coli via magnetic nanoclusters. NANOSCALE 2024; 16:3011-3023. [PMID: 38230693 DOI: 10.1039/d3nr05463b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Drinking water contamination, often caused by bacteria, leads to substantial numbers of diarrhea deaths each year, especially in developing regions. Human urine as a source of fertilizer, when handled improperly, can contaminate drinking water. One dominant bacterial pathogen in urine is Escherichia coli, which can trigger serious waterborne/foodborne diseases. Considering the prevalence of the multi-drug resistant extended-spectrum beta-lactamase (ESBL) producing E. coli, a rapid detection method for resistance is highly desired. In this work, we developed a method for quick identification of E. coli and, at the same time, capable of removal of general bacterial pathogens from human urine. A specific peptide GRHIFWRRGGGHKVAPR, reported to have a strong affinity to E. coli, was utilized to modify the PEGylated magnetic nanoclusters, resulting in a specific capture and enrichment of E. coli from the bacteria-spiked artificial urine. Subsequently, a novel luminescent probe was applied to rapidly identify the antimicrobial resistance of the collected E. coli within 30 min. These functionalized magnetic nanoclusters demonstrate a promising prospect to rapidly detect ESBL E. coli in urine and contribute to reducing drinking water contamination.
Collapse
Affiliation(s)
- Fei Pan
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Stefanie Altenried
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Subas Scheibler
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092 Zürich, Switzerland
- Laboratory for Particles Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
2
|
Rungreungthanapol T, Homma C, Akagi KI, Tanaka M, Kikuchi J, Tomizawa H, Sugizaki Y, Isobayashi A, Hayamizu Y, Okochi M. Volatile Organic Compound Detection by Graphene Field-Effect Transistors Functionalized with Fly Olfactory Receptor Mimetic Peptides. Anal Chem 2023; 95:4556-4563. [PMID: 36802525 DOI: 10.1021/acs.analchem.3c00052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
An olfactory receptor mimetic peptide-modified graphene field-effect transistor (gFET) is a promising solution to overcome the principal challenge of low specificity graphene-based sensors for volatile organic compound (VOC) sensing. Herein, peptides mimicking a fruit fly olfactory receptor, OR19a, were designed by a high-throughput analysis method that combines a peptide array and gas chromatography for the sensitive and selective gFET detection of the signature citrus VOC, limonene. The peptide probe was bifunctionalized via linkage of a graphene-binding peptide to facilitate one-step self-assembly on the sensor surface. The limonene-specific peptide probe successfully achieved highly sensitive and selective detection of limonene by gFET, with a detection range of 8-1000 pM, while achieving facile sensor functionalization. Taken together, our target-specific peptide selection and functionalization strategy of a gFET sensor demonstrates advancement of a precise VOC detection system.
Collapse
Affiliation(s)
- Tharatorn Rungreungthanapol
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Chishu Homma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ken-Ichi Akagi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan
| | - Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hideyuki Tomizawa
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8583, Japan
| | - Yoshiaki Sugizaki
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8583, Japan
| | - Atsunobu Isobayashi
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8583, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
3
|
Vengesai A, Kasambala M, Mutandadzi H, Mduluza-Jokonya TL, Mduluza T, Naicker T. Scoping review of the applications of peptide microarrays on the fight against human infections. PLoS One 2022; 17:e0248666. [PMID: 35077448 PMCID: PMC8789108 DOI: 10.1371/journal.pone.0248666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION This scoping review explores the use of peptide microarrays in the fight against infectious diseases. The research domains explored included the use of peptide microarrays in the mapping of linear B-cell and T cell epitopes, antimicrobial peptide discovery, immunosignature characterisation and disease immunodiagnostics. This review also provides a short overview of peptide microarray synthesis. METHODS Electronic databases were systematically searched to identify relevant studies. The review was conducted using the Joanna Briggs Institute methodology for scoping reviews and data charting was performed using a predefined form. The results were reported by narrative synthesis in line with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews guidelines. RESULTS Ninety-five articles from 103 studies were included in the final data charting process. The majority (92. 0%) of the articles were published during 2010-2020 and were mostly from Europe (44.2%) and North America (34.7%). The findings were from the investigation of viral (45.6%), bacterial (32. 0%), parasitic (23.3%) and fungal (2. 0%) infections. Out of the serological studies, IgG was the most reported antibody type followed by IgM. The largest portion of the studies (77.7%) were related to mapping B-cell linear epitopes, 5.8% were on diagnostics, 5.8% reported on immunosignature characterisation and 8.7% reported on viral and bacterial cell binding assays. Two studies reported on T-cell epitope profiling. CONCLUSION The most important application of peptide microarrays was found to be B-cell epitope mapping or antibody profiling to identify diagnostic and vaccine targets. Immunosignatures identified by random peptide microarrays were found to be applied in the diagnosis of infections and interrogation of vaccine responses. The analysis of the interactions of random peptide microarrays with bacterial and viral cells using binding assays enabled the identification of antimicrobial peptides. Peptide microarray arrays were also used for T-cell linear epitope mapping which may provide more information for the design of peptide-based vaccines and for the development of diagnostic reagents.
Collapse
Affiliation(s)
- Arthur Vengesai
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Gweru, Zimbabwe
| | - Maritha Kasambala
- Department of Biology, Faculty of Science and Agriculture, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Hamlet Mutandadzi
- Faculty of Medicine and Health Sciences, Parirenyatwa Hospital, University of Zimbabwe, Harare, Zimbabwe
| | - Tariro L. Mduluza-Jokonya
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Takafira Mduluza
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Gweru, Zimbabwe
| | - Thajasvarie Naicker
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| |
Collapse
|
4
|
Peptide-modified substrate enhances cell migration and migrasome formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112495. [PMID: 34857281 DOI: 10.1016/j.msec.2021.112495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are cell-to-cell communication tools. Migrasomes are recently discovered microscale EVs formed at the rear ends of migrating cells, and thus are suggested to be involved in communicating with neighboring cells. In cell culture, peptide scaffolds on substrates have been used to demonstrate cellular function for regenerative medicine. In this study, we evaluated peptide scaffolds, including cell penetrating, virus fusion, and integrin-binding peptides, for their potential to enable the formation of migrasome-like vesicles. Through structural and functional analyses, we confirmed that the EVs formed on these peptide-modified substrates were migrasomes. We further noted that the peptide interface comprising cell-penetrating peptides (pVEC and R9) and virus fusion peptide (SIV) have superior properties for enabling cell migration and migrasome formation than fibronectin protein, integrin-binding peptide (RGD), or bare substrate. This is the first report of migrasome formation on peptide-modified substrates. Additionally, the combination of 95% RGD and 5% pVEC peptides provided a functional interface for effective migrasome formation and desorption of cells from the substrate via a simple ethylenediaminetetraacetic acid treatment. These results provide a functional substrate for the enhancement of migrasome formation and functional analysis.
Collapse
|
5
|
|
6
|
Suwatthanarak T, Thiodorus IA, Tanaka M, Shimada T, Takeshita D, Yasui T, Baba Y, Okochi M. Microfluidic-based capture and release of cancer-derived exosomes via peptide-nanowire hybrid interface. LAB ON A CHIP 2021; 21:597-607. [PMID: 33367429 DOI: 10.1039/d0lc00899k] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cancer-derived circulating exosomes or nanoscale extracellular vesicles are emerging biomarkers for disease detection and treatment because of their cell-specific constituents and unique intercellular pathways. For efficient exosome isolation from bio-fluids, the design of high-affinity nanointerfaces is of great importance in the development of miniaturized systems for the collection of exosomes. Herein, we report peptide-functionalized nanowires as a biorecognition interface for the capture and release of cancer-derived exosomes within a microfluidic channel. Based on the amino-acid sequence of EWI-2 protein, a partial peptide that bound to the CD9 exosome marker and thus targeted cancer exosomes was screened. Linkage of the exosome-targeting peptide with a ZnO-binding sequence allowed one-step and reagent-free peptide modification of the ZnO nanowire array. As a result of peptide functionalization, the exosome-capturing ability of ZnO nanowires was significantly improved. Furthermore, the captured exosomes could be subsequently released from the nanowires under a neutral salt condition for downstream applications. This engineered surface that enhances the nanowires' efficiency in selective and controllable collection of cancer-derived exosomes provides an alternative foundation for developing microfluidic platforms for exosome-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Thanawat Suwatthanarak
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Armistead SJ, Rawlings AE, Smith CC, Staniland SS. Biopolymer Stabilization/Solidification of Soils: A Rapid, Micro-Macro, Cross-Disciplinary Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13963-13972. [PMID: 33095008 DOI: 10.1021/acs.est.0c02001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we describe a novel high throughput, micro-macro approach for the identification and efficient design of biopolymer stabilized soil systems. At the "microscopic" scale, we propose a rapid Membrane Enabled Bio-Mineral Affinity Screening (MEBAS) approach supported by Mineral Binding Characterization (MBC) (TGA, ATR-FTIR and ζ Potential), while at the "macroscopic" scale, micro scale results are confirmed by Geotechnical Verification (GV) through unconfined compression testing. We illustrate the methodology using an exemplar mine tailings Fe2O3-SiO2 system. Five different biopolymers were tested against Fe2O3: locust bean gum, guar gum, gellan gum, xanthan gum, and sodium carboxymethyl cellulose. The screening revealed that locust bean gum and guar gum have the highest affinity for Fe2O3, which was confirmed by MBC and in agreement with GV. This affinity is attributed to the biopolymer's ability to form covalent C-O-Fe bonds through β-(1,4)-d-mannan groups. Upon their 1% addition to a "macroscopic" Fe2O3 based exemplar MT system, unconfined compressive strengths of 5171 and 3848 kPa were obtained, significantly higher than those for the other biopolymers and non-Fe systems. In the current study, MEBAS gave an approximately 50-fold increase in rate of assessment compared to GV alone. Application of the proposed MEBAS-MBC-GV approach to a broad range of soil/earthwork components and additives is discussed.
Collapse
Affiliation(s)
- Samuel J Armistead
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
- Department of Civil and Structural Engineering, The University of Sheffield, Sir Frederick Mappin Building, Sheffield, S1 3JD, U.K
| | - Andrea E Rawlings
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
| | - Colin C Smith
- Department of Civil and Structural Engineering, The University of Sheffield, Sir Frederick Mappin Building, Sheffield, S1 3JD, U.K
| | - Sarah S Staniland
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
| |
Collapse
|
8
|
Jarrald RM, Liang Alvin AW, Rawlings AE, Tanaka M, Okochi M, Staniland SS. Systematic Screening and Deep Analysis of CoPt Binding Peptides Leads to Enhanced CoPt Nanoparticles Using Designed Peptides. Bioconjug Chem 2020; 31:1981-1994. [PMID: 32657572 DOI: 10.1021/acs.bioconjchem.0c00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using protein and peptide additives to direct the crystallization of inorganic materials is a very attractive and environmentally friendly strategy to access complex and sometimes inaccessible mineral phases. CoPt is a very desirable high-magnetoanisotropic material in its L10 phase, but this is acquired by annealing at high temperatures which is incompatible with delicate nanomaterial assembly. Previous studies identified one peptide with high affinity to CoPt and four peptides with high affinity to FePt L10 phase nanoparticles (NPs) through phage display biopanning selection. While synthesis mediated by these peptides offered a small degree of L10 character to the NPs, they do not have the magnetoanistropy required for applications. In this study, we improve the activity of peptide directed crystallization by designing second generation peptides. We use the five literature sequences (LS) to probe the binding affinity deeper through dissection (alanine scanning), reduction (truncations), and substitution of the LS to find key amino acids and motifs. This is performed using a SPOT peptide array, importantly probing interactions at three stages of NP formation: with precursor, during synthesis, and with NPs. We found four universal features: 1) the importance of basic residues, particularly lysine flanking both ends of the sequence; 2) the importance of methionine; 3) shorter sequences show higher affinity than longer ones; and 4) acidic residues have a negative impact on binding with aspartic acid less favorable than glutamic acid. However, an acidic amino acid benefits, presumably to balance charge. The short motif KSLS had high affinity in all assays. Three sequences were selected from the screening, and three sequences were designed from the rules above. These were used to mediate a green synthesis of CoPt nanoparticles. The screened peptides mediated the formation of NPs with improved coercivity (90-110 Oe) compared to the LS (30-80 Oe), while the designed peptides facilitated formation of CoPt NPs with the highest coercivity (109 to 132 Oe), representing a massive improvement on L10 character. This result along with deeper insight this methodology brings offers vast potential for the future.
Collapse
Affiliation(s)
- Rosie M Jarrald
- Department of Chemistry, The University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom of Great Britain and Northern Ireland
| | - Aw W Liang Alvin
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8522, Japan
| | - Andrea E Rawlings
- Department of Chemistry, The University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom of Great Britain and Northern Ireland
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8522, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8522, Japan
| | - Sarah S Staniland
- Department of Chemistry, The University of Sheffield, Dainton Building, Sheffield S3 7HF, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
9
|
Kubo C, Kurimoto M, Tanaka M, Ochi H, Abe F, Okochi M. Peptide array-based inhibition ELISA for evaluating antigenicity in infant formulas. J Biosci Bioeng 2020; 130:374-381. [PMID: 32713812 DOI: 10.1016/j.jbiosc.2020.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022]
Abstract
With increased awareness among consumers regarding food safety and security, food allergen control has become an indispensable requirement in the food industry. Although several methods for detecting allergens in food products are available, highly sensitive techniques are required. In this study, we developed a technique named as peptide array-based inhibition enzyme-linked immunosorbent assay (ELISA), Pep-iEIA, for evaluating antigenicity and detecting cow's milk antigen in infant formula products, using a peptide array consisting of a series of overlapping peptides found in allergenic milk proteins. Pep-iEIA was used to examine five cow's milk-based infant formulas with different degrees of hydrolyzation, and the assay offered both more sensitive detection and detailed analysis of remaining antigenic peptides in allergen compared to conventional ELISA. The antigenicity level of the allergenic peptides identified using Pep-iEIA was confirmed by surface plasmon resonance assay. We believe that Pep-iEIA will be highly useful for antigenicity evaluation of dairy products consumed by infants and patients with cow's milk allergy.
Collapse
Affiliation(s)
- Chisato Kubo
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Masaki Kurimoto
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hiroshi Ochi
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Fumiaki Abe
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
10
|
Suwatthanarak T, Tanaka M, Minamide T, Harvie AJ, Tamang A, Critchley K, Evans SD, Okochi M. Screening and characterisation of CdTe/CdS quantum dot-binding peptides for material surface functionalisation. RSC Adv 2020; 10:8218-8223. [PMID: 35497846 PMCID: PMC9049935 DOI: 10.1039/d0ra00460j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Quantum dots (QDs) are promising nanomaterials due to their unique photophysical properties. For them to be useful in biological applications, the particle surface generally needs to be conjugated to biological molecules, such as antibodies. In this study, we screened CdTe/CdS QD-binding peptides from a phage display library as linkers for simple and bio-friendly QD modification. Among five QD-binding peptide candidates, a series of truncated peptides designed from two high-affinity peptides were subjected to an array-based binding assay with QDs to assess their functional core sequences and characteristics. Linking these isolated, shortened peptides (PWSLNR and SGVYK) with an antibody-binding peptide (NKFRGKYK) created dual-functional peptides that are capable of QD surface functionalisation by antibodies. Consequently, the dual-functional peptides could mediate anti-CD9 antibody functionalisation onto CdTe/CdS QD surface; CD9 protein imaging of cancer cells was also demonstrated. Our proposed peptides offer an effective vehicle for QD surface functionalisation in biological applications.
Collapse
Affiliation(s)
- Thanawat Suwatthanarak
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Taisuke Minamide
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Andrew J Harvie
- School of Physics and Astronomy, University of Leeds Leeds LS2 9JT UK
- Department of Chemistry, Norwegian University of Science and Technology (NTNU) Trondheim 7491 Norway
| | - Abiral Tamang
- School of Physics and Astronomy, University of Leeds Leeds LS2 9JT UK
| | - Kevin Critchley
- School of Physics and Astronomy, University of Leeds Leeds LS2 9JT UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds Leeds LS2 9JT UK
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
11
|
Tanaka M, Minamide T, Takahashi Y, Hanai Y, Yanagida T, Okochi M. Peptide Screening from a Phage Display Library for Benzaldehyde Recognition. CHEM LETT 2019. [DOI: 10.1246/cl.190318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Taisuke Minamide
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuta Takahashi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yosuke Hanai
- Engineering Division, Industrial Solutions Company, Panasonic Corporation, 1006 Oaza Kadoma, Kadoma, Osaka 571-8506, Japan
| | - Takeshi Yanagida
- Laboratory of Integrated Nanostructure Materials, Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
12
|
Tanaka M, Takahashi Y, Roach L, Critchley K, Evans SD, Okochi M. Rational screening of biomineralisation peptides for colour-selected one-pot gold nanoparticle syntheses. NANOSCALE ADVANCES 2019; 1:71-75. [PMID: 36132451 PMCID: PMC9473233 DOI: 10.1039/c8na00075a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 06/11/2023]
Abstract
Biomineralisation peptides that facilitate the one-pot synthesis of gold nanoparticles (AuNPs) with selected optical properties, were screened using a coherent peptide-spotted array consisting of a AuNP binding peptide library. As the biomineralised AuNPs were captured on each peptide spot, analysis of the images provided information on their collective optical properties.
Collapse
Affiliation(s)
- M Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan +81-3-5734-2116 +81-3-5734-2116
| | - Y Takahashi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan +81-3-5734-2116 +81-3-5734-2116
| | - L Roach
- School of Physics and Astronomy, University of Leeds Leeds LS2 9JT UK
| | - K Critchley
- School of Physics and Astronomy, University of Leeds Leeds LS2 9JT UK
| | - S D Evans
- School of Physics and Astronomy, University of Leeds Leeds LS2 9JT UK
| | - M Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan +81-3-5734-2116 +81-3-5734-2116
| |
Collapse
|