2
|
Comeo E, Trinh P, Nguyen AT, Nowell CJ, Kindon ND, Soave M, Stoddart LA, White JM, Hill SJ, Kellam B, Halls ML, May LT, Scammells PJ. Development and Application of Subtype-Selective Fluorescent Antagonists for the Study of the Human Adenosine A 1 Receptor in Living Cells. J Med Chem 2021; 64:6670-6695. [PMID: 33724031 DOI: 10.1021/acs.jmedchem.0c02067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The adenosine A1 receptor (A1AR) is a G-protein-coupled receptor (GPCR) that provides important therapeutic opportunities for a number of conditions including congestive heart failure, tachycardia, and neuropathic pain. The development of A1AR-selective fluorescent ligands will enhance our understanding of the subcellular mechanisms underlying A1AR pharmacology facilitating the development of more efficacious and selective therapies. Herein, we report the design, synthesis, and application of a novel series of A1AR-selective fluorescent probes based on 8-functionalized bicyclo[2.2.2]octylxanthine and 3-functionalized 8-(adamant-1-yl) xanthine scaffolds. These fluorescent conjugates allowed quantification of kinetic and equilibrium ligand binding parameters using NanoBRET and visualization of specific receptor distribution patterns in living cells by confocal imaging and total internal reflection fluorescence (TIRF) microscopy. As such, the novel A1AR-selective fluorescent antagonists described herein can be applied in conjunction with a series of fluorescence-based techniques to foster understanding of A1AR molecular pharmacology and signaling in living cells.
Collapse
Affiliation(s)
- Eleonora Comeo
- Medicinal Chemistry, Monash University, Parkville, Victoria 3052, Australia.,Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Phuc Trinh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Anh T Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicholas D Kindon
- Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Leigh A Stoddart
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Jonathan M White
- School of Chemistry and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Barrie Kellam
- Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
3
|
Gomez Pinheiro GE, Ihmels H, Dohmen C. Mild Synthesis of Fluorosolvatochromic and Acidochromic 3-Hydroxy-4-pyridylisoquinoline Derivatives from Easily Available Substrates. J Org Chem 2019; 84:3011-3016. [PMID: 30701977 DOI: 10.1021/acs.joc.8b03272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The reaction of sodium cyanate with benzo[ b]quinolizinium substrates at room temperature gave 3-hydroxy-4-pyridyl-isoquinoline derivatives in good yields. Presumably, the overall reaction proceeds through an ANRORC-type sequence, that is, addition of the nucleophile, ring opening, and ring closure. Preliminary photophysical investigation of the parent compound revealed a pronounced sensitivity of its emission properties toward solvent effects and the pH of the medium.
Collapse
Affiliation(s)
- Gabriel E Gomez Pinheiro
- Department of Chemistry and Biology, and Center of Micro and Nanochemistry and Engineering , University of Siegen , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, and Center of Micro and Nanochemistry and Engineering , University of Siegen , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Christoph Dohmen
- Department of Chemistry and Biology, and Center of Micro and Nanochemistry and Engineering , University of Siegen , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| |
Collapse
|