1
|
Zhao W, Wang L, Zhang M, Liu Z, Wu C, Pan X, Huang Z, Lu C, Quan G. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm (Beijing) 2024; 5:e603. [PMID: 38911063 PMCID: PMC11193138 DOI: 10.1002/mco2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Photodynamic therapy (PDT) is a temporally and spatially precisely controllable, noninvasive, and potentially highly efficient method of phototherapy. The three components of PDT primarily include photosensitizers, oxygen, and light. PDT employs specific wavelengths of light to active photosensitizers at the tumor site, generating reactive oxygen species that are fatal to tumor cells. Nevertheless, traditional photosensitizers have disadvantages such as poor water solubility, severe oxygen-dependency, and low targetability, and the light is difficult to penetrate the deep tumor tissue, which remains the toughest task in the application of PDT in the clinic. Here, we systematically summarize the development and the molecular mechanisms of photosensitizers, and the challenges of PDT in tumor management, highlighting the advantages of nanocarriers-based PDT against cancer. The development of third generation photosensitizers has opened up new horizons in PDT, and the cooperation between nanocarriers and PDT has attained satisfactory achievements. Finally, the clinical studies of PDT are discussed. Overall, we present an overview and our perspective of PDT in the field of tumor management, and we believe this work will provide a new insight into tumor-based PDT.
Collapse
Affiliation(s)
- Wanchen Zhao
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Meihong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Zhiqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xin Pan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
2
|
Cui M, Zhu S, Xiong M, Zuo H, Li X, Wang K, Jiang J. Novel naphthalimide bridged zinc porphyrin/BODIPY nanomaterials with D-A structure for photodynamic therapy. J PORPHYR PHTHALOCYA 2024; 28:166-172. [DOI: 10.1142/s1088424624500093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
As a non-invasive cancer therapy method, photodynamic therapy (PDT) shows tremendous promise in clinical cancer treatment. Light-activated singlet oxygen production of photosensitizers (PSs) is the prerequisite for cancer PDT, and the use of organic photosensitizers is always limited by visible light-based activation, hydrophilicity, biocompatibility, selectivity and quantum yield of singlet oxygen. Currently, both zinc porphyrin- and BODIPY-based structures have been widely used in the development of PDT PSs. Here, we developed a novel naphthalimide bridged zinc porphyrin/BODIPY molecule (Por-BDP-1) with two poly(ethylene glycol) (PEG) chains, in which D-A structure was constructed between the naphthalimide group and porphyrin group. After self-assembly into nanoparticles, Por-BDP-1 NPs (Diameter: 122.4 nm) could quench fluorescence in 600–700 nm, bind with calf thymus-DNA, and produce singlet oxygen during light-irradiation (laser: 680 nm, 1.0 W/cm[Formula: see text]. In addition, Por-BDP-1 NPs effectively killed HeLa cells with a IC[Formula: see text] value = 44.8 μg/mL and showed a lower dark toxicity under the same conditions. All our results demonstrated that our naphthalimide bridged zinc porphyrin/BODIPY nano-photosensitizer is a promising nanoagent for PDT in the clinic.
Collapse
Affiliation(s)
- Min Cui
- Wuhan Asia General Hospital, Wuhan, 430050, Hubei, P. R. China
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Sijie Zhu
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Mengmeng Xiong
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Huijie Zuo
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, P. R. China
| | - Kai Wang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, P. R. China
| | - Jun Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, P. R. China
| |
Collapse
|
3
|
Zhao F, Chen G, Lin X, Jiang J, Xia Y, Li X, Wang K. Novel 3RAX-based fluorescent probe for hydrogen sulfide detection and photodynamic therapy. JOURNAL OF LUMINESCENCE 2023; 263:119990. [DOI: 10.1016/j.jlumin.2023.119990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
4
|
Jia F, Li X, Wang K, Dong X, Liao T, Li C, Chen G, Jiang J. Development of novel hydrogen sulfide depletion aided platform for photodynamic therapy with enhanced anticancer performance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112646. [PMID: 36638557 DOI: 10.1016/j.jphotobiol.2022.112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Hydrogen sulfide (H2S) as a key fundamental gasotransmitter regulates various biological processes, and the incontrollable H2S is essentially associated with the occurrence and development of multiple diseases, including cancers. Photodynamic therapy (PDT), as an invasive tumor treatment technology, has also attracted great attentions. Due to the key role of elevated H2S in cancers, integrating H2S depletion/recognition and PDT should be an effective strategy to enhance anticancer performance. In this work, we report a H2S depletion aided PDT platform (3RAX-NBD) by the chemical ligation of 3RAX and NBD. 3RAX-NBD can react rapidly with H2S and generate a novel 3RAX derivative compound 3 with increased fluorescence in vitro and in vivo. More notably, 3RAX-NBD can effectively kill multiple cancer cells through in situ irradiation, and 3RAX-NBD also has prominent anticancer effects on 4 T1 tumor-bearing BALB/c female mice with no notably toxic side effects. We believe that our H2S depletion aided PDT platform may provide a powerful tool for studying the key roles of H2S in diseases, and also give another promising candidate for cancer treatment.
Collapse
Affiliation(s)
- Fang Jia
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China; Hubei Province Engineering Center of Performance Chemicals, Hubei University, Wuhan, 430062, China
| | - Xiang Li
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China; Hubei Province Engineering Center of Performance Chemicals, Hubei University, Wuhan, 430062, China
| | - Kai Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China; Hubei Province Engineering Center of Performance Chemicals, Hubei University, Wuhan, 430062, China.
| | - Xin Dong
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China; Hubei Province Engineering Center of Performance Chemicals, Hubei University, Wuhan, 430062, China
| | - Tao Liao
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Cao Li
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Gang Chen
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China; Hubei Province Engineering Center of Performance Chemicals, Hubei University, Wuhan, 430062, China
| | - Jun Jiang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China; Hubei Province Engineering Center of Performance Chemicals, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
5
|
Liu Z, Li H, Tian Z, Liu X, Guo Y, He J, Wang Z, Zhou T, Liu Y. Porphyrin-Based Nanoparticles: A Promising Phototherapy Platform. Chempluschem 2022; 87:e202200156. [PMID: 35997087 DOI: 10.1002/cplu.202200156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Phototherapy, including photodynamic therapy and photothermal therapy, is an emerging form of non-invasive treatment. The combination of imaging technology and phototherapy is becoming an attractive development in the treatment of cancer, as it allows for highly effective therapeutic results through image-guided phototherapy. Porphyrins have attracted significant interest in the treatment and diagnosis of cancer due to their excellent phototherapeutic effects in phototherapy and their remarkable imaging capabilities in fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. However, porphyrins suffer from poor water solubility, low near-infrared absorption and insufficient tumor accumulation. The development of nanotechnology provides an effective way to improve the bioavailability, phototherapeutic effect and imaging capability of porphyrins. This review highlights the research results of porphyrin-based small molecule nanoparticles in phototherapy and image-guided phototherapy in the last decade and discusses the challenges and directions for the development of porphyrin-based small molecule nanoparticles in phototherapy.
Collapse
Affiliation(s)
- Zhenhua Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Hui Li
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Xin Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Yu Guo
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Zhenyu Wang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Tao Zhou
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| |
Collapse
|
6
|
Sajjad F, Han Y, Bao L, Yan Y, O Shea D, Wang L, Chen Z. The improvement of biocompatibility by incorporating porphyrins into carbon dots with photodynamic effects and pH sensitivities. J Biomater Appl 2021; 36:1378-1389. [PMID: 34968148 DOI: 10.1177/08853282211050449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photodynamic therapy (PDT) is a promising new treatment for cancer; however, the hydrophobic interactions and poor solubility in water of photosensitizers limit the use in clinic. Nanoparticles especially carbon dots have attracted the attention of the world's scientists because of their unique properties such as good solubility and biocompatibility. In this paper, we integrated carbon dots with different porphyrins to improve the properties of porphyrins and evaluated their efficacy as PDT drugs. The spectroscopic characteristics of porphyrins nano-conjugates were studied. Singlet oxygen generation rate and the light- and dark-induced toxicity of the conjugates were studied. Our results showed that the covalent interaction between CDs and porphyrins has improved the biocompatibility. The synthesized conjugates also inherit the pH sensitivity of the carbon dots, while the conjugation also decreases the hemolysis ratio making them a promising candidate for PDT. The incorporation of carbon dots into porphyrins improved their biocompatibility by reducing toxicity.
Collapse
Affiliation(s)
| | - Yiping Han
- Shanghai Changhai Hospital, Shanghai, China
| | - Leilei Bao
- Shanghai Changhai Hospital, Shanghai, China
| | - Yijia Yan
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | - Donal O Shea
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | | | | |
Collapse
|
7
|
|
8
|
Triphenylamine-perylene diimide conjugate-based organic nanoparticles for photoacoustic imaging and cancer phototherapy. Colloids Surf B Biointerfaces 2021; 205:111841. [PMID: 33992824 DOI: 10.1016/j.colsurfb.2021.111841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
Abstract
Phototherapy has gained great attention in the past decade owing to the advantages of high selectivity and low toxicity. However, it's still a challenge to develop a single photosensitizer that can achieve both photothermal and photodynamic effects. Herein, we design and synthesize a new organic compound (PIT) with a typical D-A-D structure through the covalent conjugation of perylene diimides (PDI) and triphenylamine (TPA). The amphiphilic PIT could be transformed to the nanoparticles (PIT NPs) through nanoprecipitation method. PIT NPs exhibit good water dispersibility with particle size around 70 nm. Because of the efficient NIR absorption, PIT NPs display high photothermal conversion efficiency (PCE) (η = 46.1 %) and strong photoacoustic signal under irradiation of 635 nm laser. Moreover, under the same laser irradiation, significant reactive oxygen species can be induced by PIT NPs both in aqueous solution and cancer cells. The MTT assay demonstrate the good biocompatibility and outstanding photocytotoxicity of PIT NPs. Thus, the as-prepared PIT NPs could be used as excellent candidates for photoacoustic imaging and photodynamic/photothermal therapy.
Collapse
|
9
|
Self-assembly of methylene violet-conjugated perylene diimide with photodynamic/photothermal properties for DNA photocleavage and cancer treatment. Colloids Surf B Biointerfaces 2020; 196:111351. [DOI: 10.1016/j.colsurfb.2020.111351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
|
10
|
Wang Z, Chen L, Wang K, Chau HF, Wong KL, Fung YH, Wu F. Triphenylamine-substituted zinc porphyrin nanoparticles with photodynamic/photothermal activity for cancer phototherapy in vitro. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An amphiphilic zinc porphyrin complex with a typical donor–acceptor (D–A) structure was synthesized, where the triphenylamine acted as a donor unit while the porphyrin was used as an electronic acceptor. Due to the presence of triethylene glycol moieties on the parent structure, Zn-TPAP could spontaneously assemble to the related nanoparticles (Zn-TPAP NPs) with improved hydrophilicity. The as-prepared Zn-TPAP NPs presented relatively uniform spherical particles with the average particle sizes around 160 nm, which was suitable for tumor accumulation benefiting from the EPR effect. Due to the aggregation of the porphyrin molecules in the assembled nanostructures, Zn-TPAP NPs displayed broadened and red-shifted absorption and quenched fluorescence relative to that of Zn-TPAP. In addition to ROS generation, Zn-TPAP NPs exhibited moderate photothermal effects and the photothermal conversion efficiency was measured as 29%. Zn-TPAP NPs showed good biocompatibility and could generate ROS in the A549 cells. Under light irradiation, Zn-TPAP NPs can efficiently kill cancer cells. Thus, Zn-TPAP NPs could be used as potential nanoagents for cancer treatment through the photothermal/photodynamic synergistic modes.
Collapse
Affiliation(s)
- Zejiang Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072 P. R. China
| | - Li Chen
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 P. R. China
| | - Kai Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 P. R. China
| | - Ho-Fai Chau
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Yan-Ho Fung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072 P. R. China
| |
Collapse
|
11
|
Pandey S, Bodas D. High-quality quantum dots for multiplexed bioimaging: A critical review. Adv Colloid Interface Sci 2020; 278:102137. [PMID: 32171116 DOI: 10.1016/j.cis.2020.102137] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/18/2022]
Abstract
Bioimaging done using two or more fluorophores possessing different emission wavelengths can be termed as a multicolor/multiplexed bioimaging technique. Traditionally, images are captured sequentially using multiple fluorophores having specific excitation and emission. For this purpose, multifunctional nanoprobes, such as organic fluorophores, metallic nanoparticles, semiconductor quantum dots, and carbon dots (CDs) are used. Among these fluorophores, quantum dots (QDs) have emerged as an ideal probe for multiplexed bioimaging due to their unique property of size tunable emission. However, the usage of quantum dots in bioimaging is limited due to their toxicity. Furthermore, the reproducibility of optical properties is cynical. These desirable properties, along with enhancement in quantum efficiency, photostability, fluorescence lifetime, etc. can be achieved by stringent control over synthesis parameters. This review summarizes the desirable properties and synthesis methods of such superior QDs followed by their application in multiplexed imaging.
Collapse
Affiliation(s)
- Sulaxna Pandey
- Nanobioscience group, Agharkar Research Institute, GG Agarkar Road, Pune 411 004, India; Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Dhananjay Bodas
- Nanobioscience group, Agharkar Research Institute, GG Agarkar Road, Pune 411 004, India; Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India.
| |
Collapse
|
12
|
Deng J, Li H, Yang M, Wu F. Palladium porphyrin complexes for photodynamic cancer therapy: effect of porphyrin units and metal. Photochem Photobiol Sci 2020; 19:905-912. [DOI: 10.1039/c9pp00363k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ROS generation ability and photocytotoxicity of the synthesized porphyrin compounds were enhanced with the number of porphyrin units in the photosensitizers.
Collapse
Affiliation(s)
- Jingran Deng
- Key Laboratory for Green Chemical Process of the Ministry of Education
- Hubei Novel Reactor and Green Chemical Technology Key Laboratory
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| | - Haolan Li
- Key Laboratory for Green Chemical Process of the Ministry of Education
- Hubei Novel Reactor and Green Chemical Technology Key Laboratory
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| | - Mengqian Yang
- Key Laboratory for Green Chemical Process of the Ministry of Education
- Hubei Novel Reactor and Green Chemical Technology Key Laboratory
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of the Ministry of Education
- Hubei Novel Reactor and Green Chemical Technology Key Laboratory
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
| |
Collapse
|
13
|
Yang M, Cao S, Sun X, Su H, Li H, Liu G, Luo X, Wu F. Self-Assembled Naphthalimide Conjugated Porphyrin Nanomaterials with D–A Structure for PDT/PTT Synergistic Therapy. Bioconjug Chem 2019; 31:663-672. [DOI: 10.1021/acs.bioconjchem.9b00819] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mengqian Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Xinzhi Sun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Huifang Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Haolan Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| |
Collapse
|
14
|
Yang M, Deng J, Guo D, Zhang J, Yang L, Wu F. A folate-conjugated platinum porphyrin complex as a new cancer-targeting photosensitizer for photodynamic therapy. Org Biomol Chem 2019; 17:5367-5374. [PMID: 31106316 DOI: 10.1039/c9ob00698b] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new folate-conjugated platinum porphyrin complex (Por 4) was synthesized and characterized. The singlet oxygen production of the conjugates was evaluated through a 1,3-diphenylisobenzofuran method. The targeting ability and subcellular localization of Por 4 were confirmed by confocal laser scanning microscopy in HeLa cells (overexpression of FR) as well as in A549 cells (low expression of FR). The results suggested that the modification of the carboxyl group with a porphyrin compound did not decrease the binding affinity of folic acid to FR positive cancer cells. Moreover, the MTT assay using HeLa cells and A549 cells verified the low cytotoxicity of Por 4 in the dark. Upon irradiation, Por 4 showed noticeable improvement in toxicity against cancer cells with the overexpression of FR. Upon the treatment of Por 4 at the concentration of 20 μM, the cell viability was determined as 22% and 75% for HeLa and A549 cells, respectively, indicating that the folate-conjugated platinum porphyrin complex could be a promising PDT agent for cancer with overexpression of the folate receptor.
Collapse
Affiliation(s)
- Mengqian Yang
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Onder S, Biberoglu K, Tacal O. The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by methylene violet 3RAX. Chem Biol Interact 2019; 314:108845. [DOI: 10.1016/j.cbi.2019.108845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 02/03/2023]
|
16
|
Organic small molecular nanoparticles based on self-assembly of amphiphilic fluoroporphyrins for photodynamic and photothermal synergistic cancer therapy. Colloids Surf B Biointerfaces 2019; 182:110345. [DOI: 10.1016/j.colsurfb.2019.110345] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022]
|
17
|
Chen L, Zhao Y, Sun X, Jiang J, Wu F, Wang K. Synthesis, singlet oxygen generation and DNA photocleavage of β,β′-conjugated polycationic porphyrins. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, three [Formula: see text],[Formula: see text]-conjugated cationic porphyrin compounds were designed and synthesized. The structure of the intermediates and desired porphyrins were confirmed by UV, IR, 1H NMR, MS and elemental analysis. The interaction modes between these porphyrins and ct-DNA were studied by UV-vis spectroscopy and fluorescence emission spectroscopy. The results showed that PCP 1 had an external binding mode with DNA at low DNA concentration and could intercalate DNA with the increase of concentration. PCP 2 interacted with DNA through an external binding mode, and PCP 3 could insert into DNA. The binding constants ([Formula: see text] between PCP1[Formula: see text]PCP3 and ct-DNA were calculated to be 8.41 × 104, 7.33 × 104 and 4.14 × 104 M[Formula: see text], respectively. The singlet oxygen (1O[Formula: see text] generation of PCP1[Formula: see text]PCP3 was determined by the 1,3-diphenylisobenzofuran (DPBF) method using tetrapyridylporphyrin (H2TMPyP) as a reference. The 1O2 generation rate of PCP1[Formula: see text]PCP3 followed the order of PCP2 >PCP1>H2TMPyP >PCP3. Subsequently, the photocleavage effect of porphyrins on pBR322 plasmid DNA was studied by gel electrophoresis. At 10.0 [Formula: see text]M, PCP1 and PCP2 could cleave DNA completely. At 2.0 [Formula: see text]M, the cleavage rate of DNA by PCP3 was 57.5%, which was significantly higher than that of H2TMPyP (38.8%). These results verified that the amount of cationic ions in the porphyrin structure could affect the binding modes of porphyrins with DNA and their cleavage ability of DNA.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430072, P. R. China
| | - Yimei Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, 430062, P.R. China
| | - Xinyu Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430072, P. R. China
| | - Jun Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, 430062, P.R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430072, P. R. China
| | - Kai Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430072, P. R. China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, 430062, P.R. China
| |
Collapse
|
18
|
Zu GP, Wang JJ, Zhang Y, Chen WB, Shi YZ, Guo SW, Wang XR. Study on Five Porphyrin-Based Photosensitizers for Singlet Oxygen Generation. ChemistrySelect 2019. [DOI: 10.1002/slct.201803654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Guo-Ping Zu
- The Second Affiliated Hospital of Xinxiang Medical University; Xinxiang 453002 P. R. China
- College of Chemistry, Chemical Engineering and Environmental Engineering; Liaoning Shihua University; Fushun 113001 P. R. China
| | - Jin-Jin Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering; Liaoning Shihua University; Fushun 113001 P. R. China
| | - Yan Zhang
- College of Chemistry, Chemical Engineering and Environmental Engineering; Liaoning Shihua University; Fushun 113001 P. R. China
| | - Wang-Bin Chen
- College of Chemistry, Chemical Engineering and Environmental Engineering; Liaoning Shihua University; Fushun 113001 P. R. China
| | - Yu-Zhong Shi
- The Second Affiliated Hospital of Xinxiang Medical University; Xinxiang 453002 P. R. China
| | - Sheng-Wei Guo
- School of Materials Science & Engineering; North Minzu University; Yinchuan 750021 P. R. China
| | - Xiao-Rong Wang
- School of Materials Science & Engineering; North Minzu University; Yinchuan 750021 P. R. China
- College of Chemistry, Chemical Engineering and Environmental Engineering; Liaoning Shihua University; Fushun 113001 P. R. China
| |
Collapse
|
19
|
Wu F, Yue L, Su H, Wang K, Yang L, Zhu X. Carbon Dots @ Platinum Porphyrin Composite as Theranostic Nanoagent for Efficient Photodynamic Cancer Therapy. NANOSCALE RESEARCH LETTERS 2018; 13:357. [PMID: 30411168 PMCID: PMC6223393 DOI: 10.1186/s11671-018-2761-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/17/2018] [Indexed: 05/15/2023]
Abstract
Photosensitizers are light-sensitive molecules that are highly hydrophobic, which poses a challenge to their use for photodynamic therapy. Hence, considerable efforts have been made to develop carriers for the delivery of PSs. Herein, we synthesized a new theranostic nanoagent (CQDs@PtPor) through the electrostatic interaction between the tetraplatinated porphyrin complex (PtPor) and the negatively charged CQDs. The size and morphology of as-prepared CQDs and CQDs@PtPor were characterized by a series of methods, such as XRD, TEM, XPS, and FTIR spectroscopy. The CQDs@PtPor composite integrates the optical properties of CQDs and the anticancer function of porphyrin into a single unit. The spectral results suggested the effective resonance energy transfer from CQDs to PtPor in the CQDs@PtPor composite. Impressively, the CQDs@PtPor composite showed the stronger PDT effect than that of organic molecular PtPor, suggesting that CQDs@PtPor is advantageous over the conventional formulation, attributable to the enhanced efficiency of 1O2 production of PtPor by CQDs. Thus, this CQDs-based drug nanocarrier exhibited enhanced tumor-inhibition efficacy as well as low side effects in vitro, showing significant application potential in the cancer therapy.
Collapse
Affiliation(s)
- Fengshou Wu
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205 People’s Republic of China
| | - Liangliang Yue
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205 People’s Republic of China
| | - Huifang Su
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
| | - Kai Wang
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205 People’s Republic of China
| | - Lixia Yang
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205 People’s Republic of China
| | - Xunjin Zhu
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, People’s Republic of China
| |
Collapse
|
20
|
Wu F, Yang M, Zhang J, Zhu S, Shi M, Wang K. Metalloporphyrin–indomethacin conjugates as new photosensitizers for photodynamic therapy. J Biol Inorg Chem 2018; 24:53-60. [DOI: 10.1007/s00775-018-1626-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022]
|
21
|
Jiang J, Liu D, Zhao Y, Wu F, Yang K, Wang K. Synthesis, DNA binding mode, singlet oxygen photogeneration and DNA photocleavage activity of ruthenium compounds with porphyrin-imidazo[4,5-f
]phenanthroline conjugated ligand. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jun Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Hubei University; Wuhan People's Republic of China
| | - Dan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education; Wuhan Institute of Technology; Wuhan People's Republic of China
| | - Yimei Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Hubei University; Wuhan People's Republic of China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education; Wuhan Institute of Technology; Wuhan People's Republic of China
| | - Ke Yang
- Key Laboratory for Green Chemical Process of Ministry of Education; Wuhan Institute of Technology; Wuhan People's Republic of China
| | - Kai Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Hubei University; Wuhan People's Republic of China
| |
Collapse
|