1
|
de Souza Rodrigues R, de Souza AQL, Feitoza MDO, Alves TCL, Barbosa AN, da Silva Santiago SRS, de Souza ADL. Biotechnological potential of actinomycetes in the 21st century: a brief review. Antonie Van Leeuwenhoek 2024; 117:82. [PMID: 38789815 DOI: 10.1007/s10482-024-01964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
This brief review aims to draw attention to the biotechnological potential of actinomycetes. Their main uses as sources of antibiotics and in agriculture would be enough not to neglect them; however, as we will see, their biotechnological application is much broader. Far from intending to exhaust this issue, we present a short survey of the research involving actinomycetes and their applications published in the last 23 years. We highlight a perspective for the discovery of new active ingredients or new applications for the known metabolites of these microorganisms that, for approximately 80 years, since the discovery of streptomycin, have been the main source of antibiotics. Based on the collected data, we organize the text to show how the cosmopolitanism of actinomycetes and the evolutionary biotic and abiotic ecological relationships of actinomycetes translate into the expression of metabolites in the environment and the richness of biosynthetic gene clusters, many of which remain silenced in traditional laboratory cultures. We also present the main strategies used in the twenty-first century to promote the expression of these silenced genes and obtain new secondary metabolites from known or new strains. Many of these metabolites have biological activities relevant to medicine, agriculture, and biotechnology industries, including candidates for new drugs or drug models against infectious and non-infectious diseases. Below, we present significant examples of the antimicrobial spectrum of actinomycetes, which is the most commonly investigated and best known, as well as their non-antimicrobial spectrum, which is becoming better known and increasingly explored.
Collapse
Affiliation(s)
- Rafael de Souza Rodrigues
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil.
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | | | - Anderson Nogueira Barbosa
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Sarah Raquel Silveira da Silva Santiago
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Afonso Duarte Leão de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
2
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Chang S, Yan B, Chen Y, Zhao W, Gao R, Li Y, Yu L, Xie Y, Si S, Chen M. Cytotoxic hexadepsipeptides and anti-coronaviral 4-hydroxy-2-pyridones from an endophytic Fusarium sp. Front Chem 2023; 10:1106869. [PMID: 36712984 PMCID: PMC9877305 DOI: 10.3389/fchem.2022.1106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Three new hexadepsipeptides (1-3), along with beauvericin (4), beauvericin D (5), and four 4-hydroxy-2-pyridone derivatives (6-9) were isolated from the endophytic fungus Fusarium sp. CPCC 400857 that derived from the stem of tea plant. Their structures were determined by extensive 1D and 2D NMR, and HRESIMS analyses. The absolute configuration of hexadepsipeptides were elucidated by the advanced Marfey's method and chiral HPLC analysis. Compounds 4, and 7-9 displayed the cytotoxicity against human pancreatic cancer cell line, AsPC-1 with IC50 values ranging from 3.45 to 29.69 μM, and 7 and 8 also showed the antiviral activity against the coronavirus (HCoV-OC43) with IC50 values of 13.33 and 6.65 μM, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuyi Si
- *Correspondence: Shuyi Si, ; Minghua Chen,
| | | |
Collapse
|
4
|
Nazari MT, Machado BS, Marchezi G, Crestani L, Ferrari V, Colla LM, Piccin JS. Use of soil actinomycetes for pharmaceutical, food, agricultural, and environmental purposes. 3 Biotech 2022; 12:232. [PMID: 35996673 PMCID: PMC9391553 DOI: 10.1007/s13205-022-03307-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
In this article, we reviewed the international scientific production of the last years on actinomycetes isolated from soil aiming to report recent advances in using these microorganisms for different applications. The most promising genera, isolation conditions and procedures, pH, temperature, and NaCl tolerance of these bacteria were reported. Based on the content analysis of the articles, most studies have focused on the isolation and taxonomic description of new species of actinomycetes. Regarding the applications, the antimicrobial potential (antibacterial and antifungal) prevailed among the articles, followed by the production of enzymes (cellulases and chitinases, etc.), agricultural uses (plant growth promotion and phytopathogen control), bioremediation (organic and inorganic contaminants), among others. Furthermore, a wide range of growth capacity was verified, including temperatures from 4 to 60 °C (optimum: 28 °C), pH from 3 to 13 (optimum: 7), and NaCl tolerance up to 32% (optimum: 0-1%), which evidence a great tolerance for actinomycetes cultivation. Streptomyces was the genus with the highest incidence among the soil actinomycetes and the most exploited for different uses. Besides, the interest in isolating actinomycetes from soils in extreme environments (Antarctica and deserts, for example) is growing to explore the adaptive capacities of new strains and the secondary metabolites produced by these microorganisms for different industrial interests, especially for pharmaceutical, food, agricultural, and environmental purposes.
Collapse
Affiliation(s)
- Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| | - Bruna Strieder Machado
- Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS Brazil
| | - Giovana Marchezi
- Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS Brazil
| | - Larissa Crestani
- Graduate Program Chemical Engineering (PPGEQ), Federal University of Santa Maria (UFSM), Santa Maria, RS Brazil
| | - Valdecir Ferrari
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| |
Collapse
|
5
|
Wang L, Peng C, Gong B, Yang Z, Song J, Li L, Xu L, Yue T, Wang X, Yang M, Xu H, Liu X. Actinobacteria Community and Their Antibacterial and Cytotoxic Activity on the Weizhou and Xieyang Volcanic Islands in the Beibu Gulf of China. Front Microbiol 2022; 13:911408. [PMID: 35903476 PMCID: PMC9317746 DOI: 10.3389/fmicb.2022.911408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
Weizhou Island and Xieyang Island are two large and young volcanic sea islands in the northern part of the South China Sea. In this study, high-throughput sequencing (HTS) of 16S rRNA genes was used to explore the diversity of Actinobacteria in the Weizhou and Xieyang Islands. Moreover, a traditional culture-dependent method was utilized to isolate Actinobacteria, and their antibacterial and cytotoxic activities were detected. The alpha diversity indices (ACE metric) of the overall bacterial communities for the larger island (Weizhou) were higher than those for the smaller island (Xieyang). A beta diversity analysis showed a more dispersive pattern of overall bacterial and actinobacterial communities on a larger island (Weizhou). At the order level, Frankiales, Propionibacteriales, Streptomycetales, Micrococcales, Pseudonocardiales, Micromonosporales, Glycomycetales, Corynebacteriales, and Streptosporangiales were the predominant Actinobacteria. A total of 22.7% of the OTUs shared 88%-95% similarity with some known groups. More interestingly, 15 OTUs formed a distinct and most predominant clade, and shared identities of less than 95% with any known families. This is the first report about this unknown group and their 16S rRNA sequences obtained from volcanic soils. A total of 268 actinobacterial strains were isolated by the culture-dependent method. Among them, 55 Streptomyces species were isolated, representing that 76.6% of the total. S. variabilis and S. flavogriseus were the most abundant. Moreover, some rare Actinobacteria were isolated. These included Micromonospora spp., Nocardia spp., Amycolatopsis spp., Tsukamurella spp., Mycobacterium spp., and Nonomuraea spp. Among them, eight Streptomyces spp. exhibited antibacterial activity against Bacillus cereus. Only three strains inhibited the growth of Escherichia coli. Four strains showed good activity against aquatic pathogenic bacterial strains of Streptococcus iniae. The cytotoxicity assay results showed that 27 strains (10.07%) exhibited cytotoxic activity against HeLa and A549 cell lines. Many actinobacterial strains with cytotoxic activity were identified as rare Actinobacteria, which illustrated that volcanic islands are vast reservoirs for Actinobacteria with promising antibacterial and cytotoxic activity. This study may significantly improve our understanding of actinobacterial communities on volcanic islands. The isolated Actinobacteria showed promising prospects for future use.
Collapse
Affiliation(s)
- Lin Wang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Chunyan Peng
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Bin Gong
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Zicong Yang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Jingjing Song
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Lu Li
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Lili Xu
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Tao Yue
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, China
| | - Xiaolin Wang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Mengping Yang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Huimin Xu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, China
| | - Xiong Liu
- Sea Area Use Dynamic Supervising and Managing Center of Fangchenggang City, Fangchenggang, China
| |
Collapse
|
6
|
Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S, Demain AL. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol 2022; 106:1855-1878. [PMID: 35188588 PMCID: PMC8860141 DOI: 10.1007/s00253-022-11821-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/18/2022]
Abstract
Microorganisms are remarkable producers of a wide diversity of natural products that significantly improve human health and well-being. Currently, these natural products comprise half of all the pharmaceuticals on the market. After the discovery of penicillin by Alexander Fleming 85 years ago, the search for and study of antibiotics began to gain relevance as drugs. Since then, antibiotics have played a valuable role in treating infectious diseases and have saved many human lives. New molecules with anticancer, hypocholesterolemic, and immunosuppressive activity have now been introduced to treat other relevant diseases. Smaller biotechnology companies and academic laboratories generate novel antibiotics and other secondary metabolites that big pharmaceutical companies no longer develop. The purpose of this review is to illustrate some of the recent developments and to show the potential that some modern technologies like metagenomics and genome mining offer for the discovery and development of new molecules, with different functions like therapeutic alternatives needed to overcome current severe problems, such as the SARS-CoV-2 pandemic, antibiotic resistance, and other emerging diseases. KEY POINTS: • Novel alternatives for the treatment of infections caused by bacteria, fungi, and viruses. • Second wave of efforts of microbial origin against SARS-CoV-2 and related variants. • Microbial drugs used in clinical practice as hypocholesterolemic agents, immunosuppressants, and anticancer therapy.
Collapse
Affiliation(s)
- Dulce Ramírez-Rendon
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Ajit Kumar Passari
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico.
| | - Arnold L Demain
- Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ, 07940, USA
| |
Collapse
|
7
|
Shi T, Guo X, Zhu J, Hu L, He Z, Jiang D. Inhibitory Effects of Carbazomycin B Produced by Streptomyces roseoverticillatus 63 Against Xanthomonas oryzae pv. oryzae. Front Microbiol 2021; 12:616937. [PMID: 33841348 PMCID: PMC8024497 DOI: 10.3389/fmicb.2021.616937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
The present manuscript highlights the potential role of Streptomyces roseoverticillatus 63 (Sr-63) against Xanthomonas oryzae pv. oryzae (Xoo), which is the cause of a disastrous bacterial leaf blight disease with rice worldwide. The disease suppression was achieved under greenhouse conditions. A foliar spray of the fermentation broth of Sr-63 significantly reduced the leaf blight symptoms with rice in Xoo inoculated rice plants. Furthermore, we observed that the carbazomycin B, isolated from the fermentation broth of Sr-63, was demonstrated to have antibacterial activity against Xoo with a minimum inhibitory concentration (MIC) of 8 μg mL-1. The results indicated that carbzomycin B hampered the membrane formation of Xoo, reduced the production of xanthomonadin and extracellular polymeric substance (EPS). The fourier transform infrared spectroscopic (FT-IR) indicated that carbazomycin B changed the components of the cell membrane, then caused a change of the cell surface hydrophobicity of Xoo. Scanning electron microscopy revealed that the Xoo cells treated with carbazomycin B exhibited apparent structural deformation. The results also indicated that carbazomycin B had a negative impact on the metabolism of Xoo, carbazomycin B reduced the activity of malate dehydrogenase (MDH) activity and suppressed the protein expression of Xoo. Overall, our data suggests that Streptomyces roseoverticillatus 63 is a promising biocontrol agent that could be used to combat the bacterial leaf blight diseases of rice.
Collapse
Affiliation(s)
| | | | | | | | | | - Donghua Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
8
|
Fu J, Wang YN, Ma SG, Li L, Wang XJ, Li Y, Liu YB, Qu J, Yu SS. Xanthanoltrimer A–C: three xanthanolide sesquiterpene trimers from the fruits of Xanthium italicum Moretti isolated by HPLC-MS-SPE-NMR. Org Chem Front 2021. [DOI: 10.1039/d0qo01541e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Xanthanoltrimer A–C, first three xanthanolide sesquiterpene trimers from the fruits of Xanthium italicum Moretti, were isolated by HPLC-MS-SPE-NMR. Xanthanoltrimer A–C had an unprecedented 5/7/6/5/7/6/5/7 polycyclic scaffold.
Collapse
Affiliation(s)
- Jiang Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Xiao-Jing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Jing Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| |
Collapse
|
9
|
Chen C, Hu X, Wang C, Lan W, Wu X, Cao C. Structure- and Mechanism-Based Research Progress of Anti-acquired Immune Deficiency Syndrome Drugs. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|
11
|
JAKUBIEC-KRZESNIAK KATARZYNA, RAJNISZ-MATEUSIAK ALEKSANDRA, GUSPIEL ADAM, ZIEMSKA JOANNA, SOLECKA JOLANTA. Secondary Metabolites of Actinomycetes and their Antibacterial, Antifungal and Antiviral Properties. Pol J Microbiol 2019; 67:259-272. [PMID: 30451442 PMCID: PMC7256786 DOI: 10.21307/pjm-2018-048] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
The growing resistance of microorganisms towards antibiotics has become a serious global problem. Therapeutics with novel chemical scaffolds and/or mechanisms of action are urgently needed to combat infections caused by multidrug resistant pathogens, including bacteria, fungi and viruses. Development of novel antimicrobial agents is still highly dependent on the discovery of new natural products. At present, most antimicrobial drugs used in medicine are of natural origin. Among the natural producers of bioactive substances, Actinobacteria continue to be an important source of novel secondary metabolites for drug application. In this review, the authors report on the bioactive antimicrobial secondary metabolites of Actinobacteria that were described between 2011 and April 2018. Special attention is paid to the chemical scaffolds, biological activities and origin of these novel antibacterial, antifungal and antiviral compounds. Arenimycin C, chromopeptide lactone RSP 01, kocurin, macrolactins A1 and B1, chaxamycin D as well as anthracimycin are regarded as the most effective compounds with antibacterial activity. In turn, the highest potency among selected antifungal compounds is exhibited by enduspeptide B, neomaclafungins A-I and kribelloside D, while ahmpatinin i Bu, antimycin A1a, and pentapeptide 4862F are recognized as the strongest antiviral agents.
Collapse
Affiliation(s)
- KATARZYNA JAKUBIEC-KRZESNIAK
- National Institute of Public Health – National Institute of Hygiene, Department of Environmental Health and Safety, Warsaw, Poland
| | - ALEKSANDRA RAJNISZ-MATEUSIAK
- National Institute of Public Health – National Institute of Hygiene, Department of Environmental Health and Safety, Warsaw, Poland
| | - ADAM GUSPIEL
- National Institute of Public Health – National Institute of Hygiene, Department of Environmental Health and Safety, Warsaw, Poland
| | - JOANNA ZIEMSKA
- National Institute of Public Health – National Institute of Hygiene, Department of Environmental Health and Safety, Warsaw, Poland
| | - JOLANTA SOLECKA
- National Institute of Public Health – National Institute of Hygiene, Department of Environmental Health and Safety, Warsaw, Poland
| |
Collapse
|
12
|
Chen M, Wang R, Zhao W, Yu L, Zhang C, Chang S, Li Y, Zhang T, Xing J, Gan M, Feng F, Si S. Isocoumarindole A, a Chlorinated Isocoumarin and Indole Alkaloid Hybrid Metabolite from an Endolichenic Fungus Aspergillus sp. Org Lett 2019; 21:1530-1533. [PMID: 30785290 DOI: 10.1021/acs.orglett.9b00385] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isocoumarindole A (1), a novel polyketide synthetase-nonribosomal peptide synthetase (PKS-NRPS) hybrid metabolite, was isolated from the endolichenic fungus Aspergillus sp. CPCC 400810. The structure of isocoumarindole A (1) was featured by an unprecedented skeleton containing chlorinated isocoumarin and indole diketopiperazine alkaloid moieties linked by a carbon-carbon bond, which was determined by a combination of spectroscopic analyses, Marfey's method, and calculations of NMR chemical shifts, ECD spectra, and optical rotation values. Isocoumarindole A showed significant cytotoxicity and mild antifungal activities.
Collapse
Affiliation(s)
- Minghua Chen
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China.,Key Laboratory for Uighur Medicine , Institute of Materia Medica of Xinjiang Uygur Autonomous Region , Urumqi 830004 , People's Republic of China
| | - Renzhong Wang
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China.,Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Wuli Zhao
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Liyan Yu
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Conghui Zhang
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Shanshan Chang
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Yan Li
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Tao Zhang
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Jianguo Xing
- Key Laboratory for Uighur Medicine , Institute of Materia Medica of Xinjiang Uygur Autonomous Region , Urumqi 830004 , People's Republic of China
| | - Maoluo Gan
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Shuyi Si
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| |
Collapse
|
13
|
Wang F, Zhao W, Zhang C, Chang S, Shao R, Xing J, Chen M, Zhang Y, Si S. Cytotoxic metabolites from the endophytic fungus Chaetomium globosum 7951. RSC Adv 2019; 9:16035-16039. [PMID: 35521380 PMCID: PMC9064350 DOI: 10.1039/c9ra02647a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/12/2019] [Indexed: 12/03/2022] Open
Abstract
The following compounds were isolated from acetate extracts of Chaetomium globosum 7951 solid cultures: demethylchaetocochin C (1) and chaetoperazine A (3), two new epipolythiodioxopiperazine (ETP) alkaloids, a novel pyridine benzamide, 4-formyl-N-(3′-hydroxypyridin-2′-yl) benzamide (6), and three known ETP derivatives (2, 4, and 5). The structures of these compounds were determined using extensive spectroscopic data analysis. Compounds 1–3, and 6, inhibited the growth of MCF-7, MDA-MB-231, H460 and HCT-8 cells with an IC50 of 4.5 to 65.0 μM. Demethylchaetocochin C and chaetoperazine A, two new epipolythiodioxopiperazine alkaloids, and three known analogs were isolated from Chaetomium globosum 7951. Demethylchaetocochin C significantly inhibits human lung cancer cell growth.![]()
Collapse
Affiliation(s)
- Fang Wang
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
- Institute of Medicinal Biotechnology
| | - Wuli Zhao
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
- China
| | - Conghui Zhang
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
- China
| | - Shanshan Chang
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
- China
| | - Rongguang Shao
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
- China
| | - Jianguo Xing
- Key Laboratory for Uighur Medicine
- Institute of Materia Medica of Xinjiang Uygur Autonomous Region
- Urumqi 830004
- China
| | - Minghua Chen
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
- China
| | - Yixuan Zhang
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Shuyi Si
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
- China
| |
Collapse
|