1
|
Cai D, Ye Y, Song J, Liu S, Zeng X, Zhu B, Tao Y, Cheng J, Yang Y, Zhang Y, Zou Q, Guo Y, Sun H, Zeng H. A chitosan-modified tea tree oil self-nanoemulsion improves antibacterial effects in vivo and in vitro and promotes wound healing by influencing metabolic processes against multidrug-resistant bacterial infections. Int J Biol Macromol 2024; 281:136404. [PMID: 39389511 DOI: 10.1016/j.ijbiomac.2024.136404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Infectious diseases, especially multidrug-resistant bacterial infections, have caused crises and majorly disrupted public health and economic stability worldwide. Many natural essential oils, especially tea tree oil, have potential to treat multidrug-resistant bacteria, such as H. pylori and P. aeruginosa. However, there are some problems need to be solved, such as poor stability upon light or oxygen exposure. Therefore, it is urgent to develop the ideal formation to tackle these difficulties. Herein, we reported the novel chitosan-modified self-nanoemulsion (TNE) encapsulating natural essential tea tree oil with strong antibacterial and stability characterize. In this study, we found that this self-nanoemulsion (size: 212 nm, PDI: 0.124, zeta potential: -20.5 mV, 6 % tea tree oil) not only had physical properties, good stability and tissue safety, but also had better antibacterial synergism (2-8 times) than that of water suspension against various multidrug-resistant bacterial (such as H. pylori, MRSA and P. aeruginosa). Additionally, TNE showed high antibacterial effectiveness in vivo, reduced inflammation, promoted ulcer healing after H. pylori infection and accelerated wound healing after P. aeruginosa infection. Importantly, this novel self-nanoemulsion can induce 274 protein down-regulated and 251 protein up-regulated, and disrupt H. pylori metabolic processes (glyoxylate, dicarboxylic acid, glutamate and tryptophan metabolism) and reduced its viability, leading to significant synergistic antibacterial effects. TNE is a potential treatment for skin wounds or ulcers caused by multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Dingyi Cai
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; Department of Stomatology, The 79th Group Army Hospital of PLA, Liaoyang, Liaoning 111000, China
| | - Yan Ye
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Jianye Song
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Shulin Liu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xiaoqiang Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Baohang Zhu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yikun Tao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Jingjing Cheng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yun Yang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yi Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Quanming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Ying Guo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; Department of Clinical Laboratory, Affiliated Banan Hospital of Chongqing Medical University, Chongqing 401320, China.
| | - Hongwu Sun
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Hao Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
2
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
3
|
Pan N, Liu Y, Zhang H, Xu Y, Bao X, Sheng S, Liang Y, Liu B, Lyu Y, Li H, Ma F, Pan H, Wang X. Oral Vaccination with Engineered Probiotic Limosilactobacillus reuteri Has Protective Effects against Localized and Systemic Staphylococcus aureus Infection. Microbiol Spectr 2023; 11:e0367322. [PMID: 36723073 PMCID: PMC10100842 DOI: 10.1128/spectrum.03673-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/14/2023] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium responsible for most hospital-acquired (nosocomial) and community-acquired infections worldwide. The only therapeutic strategy against S. aureus-induced infections, to date, is antibiotic treatment. A protective vaccine is urgently needed in view of the emergence of antibiotic-resistant strains associated with high-mortality cases; however, no such vaccine is currently available. In our previous work, the feasibility of implementing a Lactobacillus delivery system for development of S. aureus oral vaccine was first discussed. Here, we describe systematic screening and evaluation of protective effects of engineered Lactobacillus against S. aureus infection in terms of different delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Limosilactobacillus reuteri WXD171 was selected as the delivery vehicle strain based on its tolerance of the gastrointestinal environment, adhesion ability, and antimicrobial activities in vitro and in vivo. We designed, constructed, and evaluated engineered L. reuteri strains expressing various S. aureus antigens. Among these, engineered L. reuteri WXD171-IsdB displayed effective protection against S. aureus-induced localized infection (pneumonia and skin infection) and, furthermore, a substantial survival benefit in systemic infection (sepsis). WXD171-IsdB induced mucosal responses in gut-associated lymphoid tissues, as evidenced by increased production of secretory IgA and interleukin 17A (IL-17A) and proliferation of lymphocytes derived from Peyer's patches. The probiotic L. reuteri-based oral vaccine appears to have strong potential as a prophylactic agent against S. aureus infections. Our findings regarding utilization of Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development. IMPORTANCE We systematically screened and evaluated protective effects of engineered Lactobacillus against S. aureus infection in terms of differing delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Engineered L. reuteri was developed and showed strong protective effects against both types of S. aureus-induced infection. Our findings regarding the utilization of a Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development.
Collapse
Affiliation(s)
- Na Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ying Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yueqing Lyu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haotian Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fangfei Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haiting Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
4
|
Cross-Protection against Acute Staphylococcus aureus Lung Infection in Mice by a D-Glutamate Auxotrophic Vaccine Candidate. Vaccines (Basel) 2023; 11:vaccines11020210. [PMID: 36851088 PMCID: PMC9963018 DOI: 10.3390/vaccines11020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is regarded as a threatening bacterial pathogen causing invasive pneumonia in healthcare settings and in the community. The continuous emergence of multidrug resistant strains is narrowing the treatment options for these infections. The development of an effective S. aureus vaccine is, therefore, a global priority. We have previously developed a vaccine candidate, 132 ΔmurI Δdat, which is auxotrophic for D-glutamate, and protects against sepsis caused by S. aureus. In the present study, we explored the potential of this vaccine candidate to prevent staphylococcal pneumonia, by using an acute lung infection model in BALB/c mice. Intranasal inoculation of the vaccine strain yielded transitory colonization of the lung tissue, stimulated production of relevant serum IgG and secretory IgA antibodies in the lung and distal vaginal mucosa and conferred cross-protection to acute pneumonia caused by clinically important S. aureus strains. Although these findings are promising, additional research is needed to minimize dose-dependent toxicity for safer intranasal immunization with this vaccine candidate.
Collapse
|
5
|
Li T, He B, Zhang X, Fan J, Gao L, Sun Z, Zhang J, Guo A, Pan D, Yin X, Tong Y, Song C, Kohmura Y, Yabashi M, Ishikawa T, Gao X, Jiang H. Three-Dimensional Quantitative Coherent Diffraction Imaging of Staphylococcus aureus Treated with Peptide-Mineralized Au-Cluster Probes. Anal Chem 2022; 94:13136-13144. [DOI: 10.1021/acs.analchem.2c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tangmeng Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Bo He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou310008, China
| | - Jiadong Fan
- Center for Transformative Science, ShanghaiTech University, Shanghai201210, China
| | - Liang Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing100124, China
| | - Zhibin Sun
- Photon Science Division, Paul Scherrer Institute, VilligenCH-5303, Switzerland
| | - Jianhua Zhang
- Center for Transformative Science, ShanghaiTech University, Shanghai201210, China
| | - Amin Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Dan Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Xianzhen Yin
- Center for MOST and Image Fusion Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai201203, China
| | - Yajun Tong
- Center for Transformative Science, ShanghaiTech University, Shanghai201210, China
| | - Changyong Song
- Department of Physics, Pohang University of Science and Technology, Pohang37673, South Korea
| | - Yoshiki Kohmura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo679-5148, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo679-5148, Japan
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing100124, China
| | - Huaidong Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai201210, China
| |
Collapse
|
6
|
Farjadian F, Ghasemi S, Akbarian M, Hoseini-Ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022; 10:952675. [PMID: 36186605 PMCID: PMC9515617 DOI: 10.3389/fchem.2022.952675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles offer numerous advantages in various fields of science, particularly in medicine. Over recent years, the use of nanoparticles in disease diagnosis and treatments has increased dramatically by the development of stimuli-responsive nano-systems, which can respond to internal or external stimuli. In the last 10 years, many preclinical studies were performed on physically triggered nano-systems to develop and optimize stable, precise, and selective therapeutic or diagnostic agents. In this regard, the systems must meet the requirements of efficacy, toxicity, pharmacokinetics, and safety before clinical investigation. Several undesired aspects need to be addressed to successfully translate these physical stimuli-responsive nano-systems, as biomaterials, into clinical practice. These have to be commonly taken into account when developing physically triggered systems; thus, also applicable for nano-systems based on nanomaterials. This review focuses on physically triggered nano-systems (PTNSs), with diagnostic or therapeutic and theranostic applications. Several types of physically triggered nano-systems based on polymeric micelles and hydrogels, mesoporous silica, and magnets are reviewed and discussed in various aspects.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Soheila Ghasemi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| |
Collapse
|
7
|
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front Immunol 2021; 12:705360. [PMID: 34305945 PMCID: PMC8294057 DOI: 10.3389/fimmu.2021.705360] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most important human pathogens worldwide. Its high antibiotic resistance profile reinforces the need for new interventions like vaccines in addition to new antibiotics. Vaccine development efforts against S. aureus have failed so far however, the findings from these human clinical and non-clinical studies provide potential insight for such failures. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Translational science studies are attempting to discover correlates of protection using animal models as well as in vitro and ex vivo models assessing efficacy of vaccine candidates. Several new vaccine candidates are being tested in human clinical trials in a variety of target populations. In addition to vaccines, bacteriophages, monoclonal antibodies, centyrins and new classes of antibiotics are being developed. Some of these have been tested in humans with encouraging results. The complexity of the diseases and the range of the target populations affected by this pathogen will require a multipronged approach using different interventions, which will be discussed in this review.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
8
|
Yang Y, Ge S, Song Z, Zhao A, Zhao L, Hu Z, Cai D, Zhang Z, Peng L, Lu D, Luo P, Zhang W, Sun H, Zou Q, Zeng H. A novel self-assembled epitope peptide nanoemulsion vaccine targeting nasal mucosal epithelial cell for reinvigorating CD8 + T cell immune activity and inhibiting tumor progression. Int J Biol Macromol 2021; 183:1891-1902. [PMID: 34052270 DOI: 10.1016/j.ijbiomac.2021.05.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Epitope peptides are not suitable for nasal administration immunity due to their poor immunogenicity and low delivery efficiency. Here, we reported an intranasal self-assembled nanovaccine (I-OVA NE), which was loaded with the peptides IKVAV-OVA257-264 (I-OVA), a laminin peptide (Ile-Lys-Val-ala-Val, IKVAV) and OVA257-264 epitope conjugated peptide. This nanovaccine with I-OVA at a concentration of 4 mg/mL showed the average particle size of 30.37 ± 2.49 nm, zeta potential of -16.67 ± 1.76 mV, and encapsulation rate of 84.07 ± 7.59%. Moreover, the mucin did not alter its stability (size, PdI and zeta potential). And it also had no obvious acute pathological changes neither in the nasal mucosa nor lung tissues after nasal administration. Meanwhile, the antigen uptake of I-OVA NE was promoted, and the nasal residence time was also prolonged in vivo. Besides, the uptake rate of this nanovaccine was obviously higher than that of free I-OVA (P < 0.001) after blocking by the integrin antibody, suggesting that the binding of IKVAV to integrin is involved in the epitope peptide uptake. Importantly, this nanovaccine enhanced peptide-specific CD8+T cells exhibiting OVA257-264-specific CTL activity and Th1 immune response, leading to the induction of the protective immunity in E.G7-OVA tumor-bearing mice. Overall, these data indicate that I-OVA NE can be an applicable strategy of tumor vaccine development.
Collapse
Affiliation(s)
- Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Shuang Ge
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Zhen Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Anni Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Liqun Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Zhiming Hu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Dingyi Cai
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Zelong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Liusheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Hongwu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|