1
|
Liu B, Jin J, Ran B, Chen C, Li J, Qin N, Zhu Y. Continuous production of bimetallic nanoparticles on carbon nanotubes based on 3D-printed microfluidics. NANOSCALE 2024; 16:2565-2573. [PMID: 38224263 DOI: 10.1039/d3nr05090d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Nanoparticle-functionalized carbon nanotubes are promising in many research fields, especially in sensing, due to their intriguing performance in catalysis. However, these nanomaterials are mainly produced through batch processes under harsh conditions, thus encountering inherent limitations of low throughput and uncontrollable morphology of functional nanoparticles (NPs). In this work, we propose a method for high-yield and continuous production of bimetallic (Pt-Pd) NPs on multi-walled carbon nanotubes (MWCNTs) at room temperature through a custom 3D-printed microfluidic platform. A homogenous particle nucleation and growth environment could be created on the microfluidic platform that was equipped with two 3D-printed micromixers. Pt-Pd NPs loaded on MWCNTs were prepared in the microfluidic platform with high throughput and controlled size, dispersity and composition. The synthetic parameters for these nanocomposites were investigated to optimize their electrocatalytic performance. The optimized nanocomposites exhibited excellent electrocatalytic activity with exceptional sensitivity and wide detection range, superior to their counterparts prepared via conventional approaches. This method proposed here could be further adapted for manufacturing other catalyst support materials, opening more avenues for future large-scale production and catalytic investigation of functional nanomaterials.
Collapse
Affiliation(s)
- Bo Liu
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Bin Ran
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Chaozhan Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Jiaqian Li
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Ning Qin
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
2
|
Jahangir R, Munir I, Yesiloz G. One-Step Synthesis of Ultrasmall Nanoparticles in Glycerol as a Promising Green Solvent at Room Temperature Using Omega-Shaped Microfluidic Micromixers. Anal Chem 2023; 95:17177-17186. [PMID: 37956303 DOI: 10.1021/acs.analchem.3c01697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Despite innovations in the synthesis protocol of nanoparticles (NPs), the size distribution and uniformity of particles still remain as crucial attributes. Homogeneous and rapid nucleation is a critical phenomenon to obtain monodisperse nanoparticles. Herein, we have carried out the synthesis of metal nanoparticles in a customized microfluidic (MF) chip, with 18 omega-shaped micromixers, by using glycerol as a promising green solvent and reducing agent at various concentrations (10-80%), and simultaneous comparison of the results from batch synthesis. Initially, mixing characterization for 10-80% glycerol was obtained by adjusting the Peclet (Pe) number. Further, the effect of the Pe number, time, and concentrations of polyvinylpyrrolidone, metal source, and glycerol on the NP size was investigated. Interestingly, the experimental findings depicted that by varying different parameters, the spherical nanoparticles with an average ultrasmall particle diameter of <2 nm were obtained at all glycerol concentrations (10-80%), as compared to batch synthesis (giving a yield of ∼10-fold larger particles). The mixing efficiency in this MF chip design was analyzed by using a fluorescent dye in glycerol, while the particle morphology and size were characterized by using dynamic light scattering, transmission electron microscopy, and ultraviolet-visible spectroscopy. Hence, compared to the conventional benchtop-assisted NP synthesis, this study unveils the significant effect of the microfluidic technique on the synthesis of ultrasmall and homogeneous nanoparticles in a single step, using an environmentally friendly solvent.
Collapse
Affiliation(s)
- Robab Jahangir
- National Nanotechnology Research Center (UNAM), Bilkent University, Cankaya, Ankara 06800, Türkiye
- Institute of Materials Science and Nanotechnology, Bilkent University, Cankaya, Ankara 06800, Türkiye
| | - Iqra Munir
- National Nanotechnology Research Center (UNAM), Bilkent University, Cankaya, Ankara 06800, Türkiye
| | - Gurkan Yesiloz
- National Nanotechnology Research Center (UNAM), Bilkent University, Cankaya, Ankara 06800, Türkiye
- Institute of Materials Science and Nanotechnology, Bilkent University, Cankaya, Ankara 06800, Türkiye
| |
Collapse
|
3
|
Dembski S, Schwarz T, Oppmann M, Bandesha ST, Schmid J, Wenderoth S, Mandel K, Hansmann J. Establishing and testing a robot-based platform to enable the automated production of nanoparticles in a flexible and modular way. Sci Rep 2023; 13:11440. [PMID: 37454142 DOI: 10.1038/s41598-023-38535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Robotic systems facilitate relatively simple human-robot interaction for non-robot experts, providing the flexibility to implement different processes. In this context, shorter process times, as well as an increased product and process quality could be achieved. Robots short time-consuming processes, take over ergonomically unfavorable tasks and work efficiently all the time. In addition, flexible production is possible while maintaining or even increasing safety. This study describes the successful development of a dual-arm robot-based modular infrastructure and the establishment of an automated process for the reproducible production of nanoparticles. As proof of concept, a manual synthesis protocol for silica nanoparticle preparation with a diameter of about 200 nm as building blocks for photonic crystals was translated into a fully automated process. All devices and components of the automated system were optimized and adapted according to the synthesis requirements. To demonstrate the benefit of the automated nanoparticle production, manual (synthesis done by lab technicians) and automated syntheses were benchmarked. To this end, different processing parameters (time of synthesis procedure, accuracy of dosage etc.) and the properties of the produced nanoparticles were compared. We demonstrate that the use of the robot not only increased the synthesis accuracy and reproducibility but reduced the personnel time and costs up to 75%.
Collapse
Affiliation(s)
- Sofia Dembski
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany.
- Department of Tissue Engineering and Regenerative Medicine TERM, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
| | - Thomas Schwarz
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Maximilian Oppmann
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | | | - Jörn Schmid
- Goldfuß Engineering GmbH, Laboratory Automation, 72336, Balingen, Germany
| | - Sarah Wenderoth
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Karl Mandel
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
- Faculty of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, 97421, Schweinfurt, Germany
| |
Collapse
|
4
|
Podlesnaia E, Gerald Inangha P, Vesenka J, Seyring M, Hempel HJ, Rettenmayr M, Csáki A, Fritzsche W. Microfluidic-Generated Seeds for Gold Nanotriangle Synthesis in Three or Two Steps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204810. [PMID: 36855325 DOI: 10.1002/smll.202204810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/23/2023] [Indexed: 06/02/2023]
Abstract
Nanoparticle synthesis has drawn great attention in the last decades. The study of crystal growth mechanisms and optimization of the existing methods lead to the increasing accessibility of nanomaterials, such as gold nanotriangles which have great potential in the fields of plasmonics and catalysis. To form such structures, a careful balance of reaction parameters has to be maintained. Herein, a novel synthesis of gold nanotriangles from seeds derived with a micromixer, which provides a highly efficient mixing and simple parameter control is reported. The impact of the implemented reactor on the primary seed characteristics is investigated. The following growth steps are studied to reveal the phenomena affecting the shape yield. The use of microfluidic seeds led to the formation of well-defined triangles with a narrower size distribution compared to the entirely conventional batch synthesis. A shortened two-step procedure for the formation of triangles directly from primary seeds, granting an express but robust synthesis is further described. Moreover, the need for a thorough study of seed crystallinity depending on the synthesis conditions, which - together with additional parameter optimization - will bring a new perspective to the use of micromixers which are promising for scaling up nanomaterial production is highlighted.
Collapse
Affiliation(s)
- Ekaterina Podlesnaia
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Princess Gerald Inangha
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - James Vesenka
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany
- School of Mathematical and Physical Sciences, University of New England, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Martin Seyring
- Department of Metallic Materials, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University (FSU), Löbdergraben 32, 07743, Jena, Germany
- Faculty of Electrical Engineering, Schmalkalden University of Applied Sciences, Blechhammer 4-9, 98574, Schmalkalden, Germany
| | - Hans-Jürgen Hempel
- Department of Metallic Materials, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University (FSU), Löbdergraben 32, 07743, Jena, Germany
| | - Markus Rettenmayr
- Department of Metallic Materials, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University (FSU), Löbdergraben 32, 07743, Jena, Germany
| | - Andrea Csáki
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany
| |
Collapse
|
5
|
Britto S, Parlett CM, Bartlett S, Elliott JD, Ignatyev K, Schroeder SLM. Intermediates during the Nucleation of Platinum Nanoparticles by a Reaction with Ethylene Glycol: Operando X-ray Absorption Spectroscopy Studies with a Microfluidic Cell. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:8631-8639. [PMID: 37197382 PMCID: PMC10184164 DOI: 10.1021/acs.jpcc.2c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/27/2023] [Indexed: 05/19/2023]
Abstract
Using operando X-ray absorption spectroscopy in a continuous-flow microfluidic cell, we have investigated the nucleation of platinum nanoparticles from aqueous hexachloroplatinate solution in the presence of the reducing agent ethylene glycol. By adjusting flow rates in the microfluidic channel, we resolved the temporal evolution of the reaction system in the first few seconds, generating the time profiles for speciation, ligand exchange, and reduction of Pt. Detailed analysis of the X-ray absorption near-edge structure and extended X-ray absorption fine structure spectra with multivariate data analysis shows that at least two reaction intermediates are involved in the transformation of the precursor H2PtCl6 to metallic platinum nanoparticles, including the formation of clusters with Pt-Pt bonding before complete reduction to Pt nanoparticles.
Collapse
Affiliation(s)
- Sylvia Britto
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Christopher M.
A. Parlett
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
- Diamond
Light Source, The University of Manchester
at Harwell, Didcot, Oxfordshire OX11 0DE, U.K.
- Department
of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, U.K.
- Rutherford
Appleton Laboratory, UK Catalysis Hub, Research
Complex at Harwell, Harwell, Oxfordshire OX11 0FA, U.K.
| | - Stuart Bartlett
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Joshua D. Elliott
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Konstantin Ignatyev
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Sven L. M. Schroeder
- Diamond
Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- Rutherford
Appleton Laboratory, ESPRC Future Continuous
Manufacturing and Advanced Crystallisation (CMAC) Hub, Research Complex
at Harwell, Harwell, Oxfordshire OX11 0FA, U.K.
| |
Collapse
|
6
|
Saikia A, Newar R, Das S, Singh A, Deuri DJ, Baruah A. Scopes and Challenges of Microfluidic Technology for Nanoparticle Synthesis, Photocatalysis and Sensor Applications: A Comprehensive Review. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Perez Schmidt P, Pagano K, Lenardi C, Penconi M, Ferrando RM, Evangelisti C, Lay L, Ragona L, Marelli M, Polito L. Photo-Induced Microfluidic Production of Ultrasmall Glyco Gold Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202210140. [PMID: 36321387 PMCID: PMC10100350 DOI: 10.1002/anie.202210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/23/2022]
Abstract
Ultra-small gold nanoparticles (UAuNPs) are extremely interesting for applications in nanomedicine thanks to their good stability, biocompatibility, long circulation time and efficient clearance pathways. UAuNPs engineered with glycans (Glyco-UAuNPs) emerged as excellent platforms for many applications since the multiple copies of glycans can mimic the multivalent effect of glycoside clusters. Herein, we unravel a straightforward photo-induced synthesis of Glyco-UAuNPs based on a reliable and robust microfluidic approach. The synthesis occurs at room temperature avoiding the use of any further chemical reductant, templating agents or co-solvents. Exploiting 1 H NMR spectroscopy, we showed that the amount of thiol-ligand exposed on the UAuNPs is linearly correlated to the ligand concentration in the initial mixture. The results pave the way towards the development of a programmable synthetic approach, enabling an accurate design of the engineered UAuNPs or smart hybrid nano-systems.
Collapse
Affiliation(s)
- Patricia Perez Schmidt
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”SCITEC-CNRVia G. Fantoli 16/1520138MilanoItaly
| | - Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”SCITEC-CNRVia A. Corti 1220131MilanoItaly
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA)Department of PhysicsUniversità degli Studi di MilanoVia Celoria 1620133MilanoItaly
- Fondazione UNIMIViale Ortles 22/420139MilanoItaly
| | - Marta Penconi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”SCITEC-CNRVia G. Fantoli 16/1520138MilanoItaly
| | - Ruth Mateu Ferrando
- Department of ChemistryUniversità degli Studi di Milanovia C. Golgi 1920133MilanoItaly
| | - Claudio Evangelisti
- Institute of Chemistry of Organo Metallic CompoundsICCOM-CNRVia G. Moruzzi 156124PisaItaly
| | - Luigi Lay
- Department of ChemistryUniversità degli Studi di Milanovia C. Golgi 1920133MilanoItaly
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”SCITEC-CNRVia A. Corti 1220131MilanoItaly
| | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”SCITEC-CNRVia G. Fantoli 16/1520138MilanoItaly
| | - Laura Polito
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”SCITEC-CNRVia G. Fantoli 16/1520138MilanoItaly
| |
Collapse
|
8
|
Liu B, Ran B, Chen C, Shi L, Jin J, Zhu Y. High-Throughput Microfluidic Production of Bimetallic Nanoparticles on MXene Nanosheets and Application in Hydrogen Peroxide Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56298-56309. [PMID: 36475575 DOI: 10.1021/acsami.2c16316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoparticle-functionalized transition-metal carbides and nitrides (MXenes) have attracted extensive attention in electrochemical detection owing to their excellent catalytic performance. However, the mainstream synthetic routes rely on the batch method requiring strict experimental conditions, generally leading to low yield and poor size tunability of particles. Herein, we report a high-throughput and continuous microfluidic platform for preparing a functional MXene (Ti3C2Tx) with bimetallic nanoparticles (Pt-Pd NPs) at room temperature. Two 3D micromixers with helical elements were integrated into the microfluidic platform to enhance the secondary flow for promoting transport and reaction in the synthesis process. The rapid mixing and strong vortices in these 3D micromixers prevent aggregation of NPs in the synthesis process, enabling a homogeneous distribution of Pt-Pd NPs. In this study, Pt-Pd NPs loaded on the MXene nanosheets were synthesized under various hydrodynamic conditions of 1-15 mL min-1 with controlled sizes, densities, and compositions. The mean size of Pt-Pd NPs could be readily controlled within the range 2.4-9.3 nm with high production rates up to 13 mg min-1. In addition, synthetic and electrochemical parameters were separately optimized to improve the electrochemical performance of Ti3C2Tx/Pt-Pd. Finally, the optimized Ti3C2Tx/Pt-Pd was used for hydrogen peroxide (H2O2) detection and shows excellent electrocatalytic activity. The electrode modified with Ti3C2Tx/Pt-Pd here presents a wide detection range for H2O2 from 1 to 12 000 μM with a limit of detection down to 0.3 μM and a sensitivity up to 300 μA mM-1 cm-2, superior to those prepared in the traditional batch method. The proposed microfluidic approach could greatly enhance the electrochemical performance of Ti3C2Tx/Pt-Pd, and sheds new light on the large-scale production and catalytic application of the functional nanocomposites.
Collapse
Affiliation(s)
- Bo Liu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Bin Ran
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Chaozhan Chen
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yonggang Zhu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
9
|
Perez Schmidt P, Pagano K, Lenardi C, Penconi M, Ferrando RM, Evangelisti C, Lay L, Ragona L, Marelli M, Polito L. Photo‐Induced Microfluidic Production of Ultrasmall Glyco Gold Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Patricia Perez Schmidt
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR Via G. Fantoli 16/15 20138 Milano Italy
| | - Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR Via A. Corti 12 20131 Milano Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA) Department of Physics Università degli Studi di Milano Via Celoria 16 20133 Milano Italy
- Fondazione UNIMI Viale Ortles 22/4 20139 Milano Italy
| | - Marta Penconi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR Via G. Fantoli 16/15 20138 Milano Italy
| | - Ruth Mateu Ferrando
- Department of Chemistry Università degli Studi di Milano via C. Golgi 19 20133 Milano Italy
| | - Claudio Evangelisti
- Institute of Chemistry of Organo Metallic Compounds ICCOM-CNR Via G. Moruzzi 1 56124 Pisa Italy
| | - Luigi Lay
- Department of Chemistry Università degli Studi di Milano via C. Golgi 19 20133 Milano Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR Via A. Corti 12 20131 Milano Italy
| | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR Via G. Fantoli 16/15 20138 Milano Italy
| | - Laura Polito
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR Via G. Fantoli 16/15 20138 Milano Italy
| |
Collapse
|
10
|
Brenker J, Henzler K, Borca CN, Huthwelker T, Alan T. X-ray compatible microfluidics for in situ studies of chemical state, transport and reaction of light elements in an aqueous environment using synchrotron radiation. LAB ON A CHIP 2022; 22:1214-1230. [PMID: 35170605 DOI: 10.1039/d1lc00996f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents an X-ray compatible microfluidic platform for in situ characterization of chemical reactions at synchrotron light sources. We demonstrate easy to implement techniques to probe reacting solutions as they first come into contact, and study the very first milliseconds of their reaction in real-time through X-ray absorption spectroscopy (XAS). The devices use polydimethylsiloxane (PDMS) microfluidic channels sandwiched between ultrathin, X-ray transparent silicon nitride observation windows and rigid substrates. The new approach has three key advantages: i) owing to the assembly techniques employed, the devices are suitable for both high energy and tender (1-5 keV) X-rays; ii) they can operate in a vacuum environment (a must for low energy X-rays) and iii) they are robust enough to survive a full 8 hour shift of continuous scanning with a micro-focused beam, providing higher spatial and thus greater time resolution than previous studies. The combination of these opens new opportunities for in situ studies. This has so far not been possible with Kapton or glass-based flow cells due to increased attenuation of the low energy beam passing through these materials. The devices provide a well-defined mixing region to collect spatial maps of spatially stable concentration profiles, and XAS point spectra to elucidate the chemical structure and characterize the chemical reactions. The versatility of the approach is demonstrated through in situ XAS measurements on the mixing of two reactants in a microfluidic laminar flow device, as well as a segmented droplet based system for time resolved analysis.
Collapse
Affiliation(s)
- Jason Brenker
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia.
| | - Katja Henzler
- Paul Scherrer Institute, Swiss Light Source, Villigen, Switzerland.
| | - Camelia N Borca
- Paul Scherrer Institute, Swiss Light Source, Villigen, Switzerland.
| | | | - Tuncay Alan
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia.
| |
Collapse
|
11
|
Tofighi G, Lichtenberg H, Gaur A, Wang W, Wild S, Herrera Delgado K, Pitter S, Dittmeyer R, Grunwaldt JD, Doronkin DE. Continuous synthesis of Cu/ZnO/Al 2O 3 nanoparticles in a co-precipitation reaction using a silicon based microfluidic reactor. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microfluidic reactor enabled continuous co-precipitation synthesis of CuO/ZnO/Al2O3 catalysts for methanol production.
Collapse
Affiliation(s)
- Ghazal Tofighi
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Henning Lichtenberg
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Abhijeet Gaur
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Wu Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Wild
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Karla Herrera Delgado
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stephan Pitter
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Roland Dittmeyer
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Dmitry E. Doronkin
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Pophali A, Kajala R, Ali H, Verma N, Nigam KDP. Coiled flow inverter mediated synthesis of activated carbon fiber-supported Ni nanoparticles. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00338k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A single-stage continuous flow process for the synthesis of Ni nanoparticle-dispersed activated carbon fibers is developed using CFI technology.
Collapse
Affiliation(s)
- Amol Pophali
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rakshit Kajala
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Haider Ali
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nishith Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - K. D. P. Nigam
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
13
|
Jin Z, Wang H, Hu X, Liu Y, Hu Y, Zhao S, Zhu N, Fang Z, Guo K. Anionic polymerizations in a microreactor. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00360g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anionic polymerizations in a microreactor enable fast mixing, high-level control, and scale-up synthesis of polymers.
Collapse
Affiliation(s)
- Zhao Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Huiyue Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yujing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Shuangfei Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| |
Collapse
|
14
|
Khizar S, Zine N, Errachid A, Jaffrezic-Renault N, Elaissari A. Microfluidic based nanoparticle synthesis and their potential applications. Electrophoresis 2021; 43:819-838. [PMID: 34758117 DOI: 10.1002/elps.202100242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
A lot of substantial innovation in advancement of microfluidic field in recent years to produce nanoparticle reveals a number of distinctive characteristics for instance compactness, controllability, fineness in process, and stability along with minimal reaction amount. Recently, a prompt development, as well as realization in production of nanoparticles in microfluidic environs having dimension of micro to nanometers and constituents extending from metals, semiconductors to polymers, has been made. Microfluidics technology integrates fluid mechanics for production of nanoparticles having exclusive with homogenous sizes, shapes, and morphology, which are utilized in several bioapplications such as biosciences, drug delivery, healthcare, including food engineering. Nanoparticles are usually well-known for having fine and rough morphology because of their small dimensions including exceptional physical, biological, chemical, and optical properties. Though the orthodox procedures need huge instruments, costly autoclaves, use extra power, extraordinary heat loss, as well as take surplus time for synthesis. Additionally, this is fascinating in order to systematize, assimilate, in addition, to reduce traditional tools onto one platform to produce micro and nanoparticles. The synthesis of nanoparticles by microfluidics permits fast handling besides better efficacy of method utilizing the smallest components for process. Herein, we will focus on synthesis of nanoparticles by means of microfluidic devices intended for different bioapplications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | | | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| |
Collapse
|
15
|
Hashiguchi Y, Watanabe F, Honma T, Nakamura I, Poly SS, Kawaguchi T, Tsuji T, Murayama H, Tokunaga M, Fujitani T. Continuous-flow synthesis of Pd@Pt core-shell nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Li J, Šimek H, Ilioae D, Jung N, Bräse S, Zappe H, Dittmeyer R, Ladewig BP. In situ sensors for flow reactors – a review. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00038a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A comprehensive review on integrating microfluidic reactors with in situ sensors for reaction probing of chemical transformation.
Collapse
Affiliation(s)
- Jun Li
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Helena Šimek
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - David Ilioae
- Gisela and Erwin Sick Laboratory for Micro-optics, Department of Microsystems Engineering, University of Freiburg, Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Hans Zappe
- Gisela and Erwin Sick Laboratory for Micro-optics, Department of Microsystems Engineering, University of Freiburg, Germany
| | - Roland Dittmeyer
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Bradley P. Ladewig
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
17
|
Monolithically Integrated Diffused Silicon Two-Zone Heaters for Silicon-Pyrex Glass Microreactors for Production of Nanoparticles: Heat Exchange Aspects. MICROMACHINES 2020; 11:mi11090818. [PMID: 32872382 PMCID: PMC7569776 DOI: 10.3390/mi11090818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 01/04/2023]
Abstract
We present the design, simulation, fabrication and characterization of monolithically integrated high resistivity p-type boron-diffused silicon two-zone heaters in a model high temperature microreactor intended for nanoparticle fabrication. We used a finite element method for simulations of the heaters’ operation and performance. Our experimental model reactor structure consisted of a silicon wafer anodically bonded to a Pyrex glass wafer with an isotropically etched serpentine microchannels network. We fabricated two separate spiral heaters with different temperatures, mutually thermally isolated by barrier apertures etched throughout the silicon wafer. The heaters were characterized by electric measurements and by infrared thermal vision. The obtained results show that our proposed procedure for the heater fabrication is robust, stable and controllable, with a decreased sensitivity to random variations of fabrication process parameters. Compared to metallic or polysilicon heaters typically integrated into microreactors, our approach offers improved control over heater characteristics through adjustment of the Boron doping level and profile. Our microreactor is intended to produce titanium dioxide nanoparticles, but it could be also used to fabricate nanoparticles in different materials as well, with various parameters and geometries. Our method can be generally applied to other high-temperature microsystems.
Collapse
|
18
|
Lignos I, Utzat H, Bawendi MG, Jensen KF. Nanocrystal synthesis, μfluidic sample dilution and direct extraction of single emission linewidths in continuous flow. LAB ON A CHIP 2020; 20:1975-1980. [PMID: 32352465 DOI: 10.1039/d0lc00213e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rational design of semiconductor nanocrystal populations requires control of their emission linewidths, which are dictated by interparticle inhomogeneities and single-nanocrystal spectral linewidths. To date, research efforts have concentrated on minimizing the ensemble emission linewidths, however there is little knowledge about the synthetic parameters dictating single-nanocrystal linewidths. In this direction, we present a flow-based system coupled with an optical interferometry setup for the extraction of single nanocrystal properties. The platform has the ability to synthesize nanocrystals at high temperature <300 °C, adjust the particle concentration after synthesis and extract ensemble-averaged single nanocrystal emission linewidths using flow photon-correlation Fourier spectroscopy.
Collapse
Affiliation(s)
- Ioannis Lignos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
19
|
The Influence of the Gold Particle Size on the Catalytic Oxidation of 5-(Hydroxymethyl)furfural. Catalysts 2020. [DOI: 10.3390/catal10030342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
For the production of chemicals from biomass, new selective processes are required. The selective oxidation of 5-(Hydroxymethyl)furfural (HMF), a promising platform molecule in fine chemistry, to 2,5-furandicarboxylic acid (FDCA) is considered a promising approach and requires the oxidation of two functional groups. In this study, Au/ZrO2 catalysts with different mean particle sizes were prepared by a chemical reduction method using tetrakis(hydroxymethyl)phosphonium chloride (THPC) and tested in HMF oxidation. The catalyst with the smallest mean particle size (2.1 nm) and the narrowest particle size distribution was highly active in the oxidation of the aldehyde moiety of HMF, but less active in alcohol oxidation. On the other hand, increased activity in FDCA synthesis up to 92% yield was observed over catalysts with a larger mean particle size (2.7 nm), which had a large fraction of small and some larger particles. A decreasing FDCA yield over the catalyst with the largest mean particle size (2.9 nm) indicates that the oxidation of both functional groups require different particle sizes and hint at the presence of an optimal particle size for both oxidation steps. The activity of Au particles seems to be influenced by surface steps and H bonding strength, the latter particularly in aldehyde oxidation. Therefore, the presence of both small and some larger Au particles seem to give catalysts with the highest catalytic activity.
Collapse
|
20
|
Bianchi P, Petit G, Monbaliu JCM. Scalable and robust photochemical flow process towards small spherical gold nanoparticles. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00092b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Scalable preparation of small spherical gold nanoparticles under photochemical flow conditions.
Collapse
Affiliation(s)
- Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis
- MolSys Research Unit
- University of Liège
- Belgium
| | - Guillaume Petit
- Center for Integrated Technology and Organic Synthesis
- MolSys Research Unit
- University of Liège
- Belgium
| | | |
Collapse
|
21
|
Chow E, Raguse B, Della Gaspera E, Barrow SJ, Hong J, Hubble LJ, Chai R, Cooper JS, Sosa Pintos A. Flow-controlled synthesis of gold nanoparticles in a biphasic system with inline liquid–liquid separation. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00403c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
4-Dimethylaminopyridine-stabilised gold nanoparticles are synthesised in a biphasic flow reactor system using organic/aqueous membrane separators and gas-permeable tubing.
Collapse
|
22
|
Solsona M, Vollenbroek JC, Tregouet CBM, Nieuwelink AE, Olthuis W, van den Berg A, Weckhuysen BM, Odijk M. Microfluidics and catalyst particles. LAB ON A CHIP 2019; 19:3575-3601. [PMID: 31559978 DOI: 10.1039/c9lc00318e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this review article, we discuss the latest advances and future perspectives of microfluidics for micro/nanoscale catalyst particle synthesis and analysis. In the first section, we present an overview of the different methods to synthesize catalysts making use of microfluidics and in the second section, we critically review catalyst particle characterization using microfluidics. The strengths and challenges of these approaches are highlighted with various showcases selected from the recent literature. In the third section, we give our opinion on the future perspectives of the combination of catalytic nanostructures and microfluidics. We anticipate that in the synthesis and analysis of individual catalyst particles, generation of higher throughput and better understanding of transport inside individual porous catalyst particles are some of the most important benefits of microfluidics for catalyst research.
Collapse
Affiliation(s)
- M Solsona
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - J C Vollenbroek
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - C B M Tregouet
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - A-E Nieuwelink
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - W Olthuis
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - A van den Berg
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | - B M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - M Odijk
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| |
Collapse
|
23
|
Carabineiro SAC. Supported Gold Nanoparticles as Catalysts for the Oxidation of Alcohols and Alkanes. Front Chem 2019; 7:702. [PMID: 31750289 PMCID: PMC6848162 DOI: 10.3389/fchem.2019.00702] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/08/2019] [Indexed: 11/13/2022] Open
Abstract
Supporting gold nanoparticles have shown to be extremely active for many industrially important reactions, including oxidations. Two representative examples are the oxidation of alcohols and alkanes, that are substrates of industrial interest, but whose oxidation is still challenging. This review deals with these reactions, giving an insight of the first studies performed by gold based catalysts in these reactions and the most recent developments in the field.
Collapse
Affiliation(s)
- Sónia A C Carabineiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Roberts EJ, Karadaghi LR, Wang L, Malmstadt N, Brutchey RL. Continuous Flow Methods of Fabricating Catalytically Active Metal Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27479-27502. [PMID: 31287651 DOI: 10.1021/acsami.9b07268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the obstacles preventing the commercialization of colloidal nanoparticle catalysts is the difficulty in fabricating these materials at scale while maintaining a high level of control over their resulting morphologies, and ultimately, their properties. Translation of batch-scale solution nanoparticle syntheses to continuous flow reactors has been identified as one method to address the scaling issue. The superior heat and mass transport afforded by the high surface-area-to-volume ratios of micro- and millifluidic channels allows for high control over reaction conditions and oftentimes results in decreased reaction times, higher yields, and/or more monodisperse size distributions compared to an analogous batch reaction. Furthermore, continuous flow reactors are automatable and have environmental health and safety benefits, making them practical for commercialization. Herein, a discussion of continuous flow methods, reactor design, and potential challenges is presented. A thorough account of the implementation of these technologies for the fabrication of catalytically active metal nanoparticles is reviewed for hydrogenation, electrocatalysis, and oxidation reactions.
Collapse
Affiliation(s)
- Emily J Roberts
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lanja R Karadaghi
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lu Wang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Noah Malmstadt
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Richard L Brutchey
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| |
Collapse
|
25
|
Kibar G, Çalışkan U, Erdem EY, Çetin B. One‐pot synthesis of organic–inorganic hybrid polyhedral oligomeric silsesquioxane microparticles in a double‐zone temperature controlled microfluidic reactor. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Güneş Kibar
- Department of Materials EngineeringAdana Alparslan Turkes Science and Technology University 01250 Adana Turkey
| | - Umutcan Çalışkan
- Microfluidics & Lab‐on‐a‐chip Research Group, Mechanical Engineering DepartmentBilkent University 06800 Ankara Turkey
| | - E. Yegân Erdem
- Microfluidics & Lab‐on‐a‐chip Research Group, Mechanical Engineering DepartmentBilkent University 06800 Ankara Turkey
- UNAM Institute of Materials Science and NanotechnologyBilkent University 06800 Ankara Turkey
| | - Barbaros Çetin
- Microfluidics & Lab‐on‐a‐chip Research Group, Mechanical Engineering DepartmentBilkent University 06800 Ankara Turkey
| |
Collapse
|
26
|
Tofighi G, Yu X, Lichtenberg H, Doronkin DE, Wang W, Wöll C, Wang Y, Grunwaldt JD. Chemical Nature of Microfluidically Synthesized AuPd Nanoalloys Supported on TiO2. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00161] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ghazal Tofighi
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | | | - Henning Lichtenberg
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | | | | | | | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| |
Collapse
|
27
|
Asano S, Maki T, Sebastian V, Jensen KF, Mae K. Revealing the Formation Mechanism of Alloyed Pd-Ru Nanoparticles: A Conversion Measurement Approach Utilizing a Microflow Reactor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2236-2243. [PMID: 30642186 DOI: 10.1021/acs.langmuir.8b03516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The synthesis of alloyed nanoparticles has been studied extensively; however, the formation mechanisms involved remain unclear. Here, we reveal the detailed formation mechanism of alloyed nanoparticles in a Pd-Ru system, using a semibatch polyol method in which the simultaneous rapid reduction of both precursors was assumed to be the critical mechanism. We employed a microflow reactor to realize rapid heating and cooling. A significant difference in the reaction rate between the two precursors was observed. Pd was reduced within seconds, but the reduction of Ru was 2 orders of magnitude slower than that of Pd and was not as rapid as previously assumed. Further investigation of the semibatch method was performed to trace changes in the particle sizes and composition. Through quantitative and multilateral evidence, we concluded that the formation of low-crystallinity seeds, followed by solid-state diffusion, is the governing mechanism for the formation of alloyed Pd-Ru nanoparticles.
Collapse
Affiliation(s)
- Shusaku Asano
- Department of Chemical Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Taisuke Maki
- Department of Chemical Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Victor Sebastian
- Department of Chemical & Environmental Engineering , Aragon Institute of Nanoscience (INA), University of Zaragoza , Campus Rio Ebro , 50018 Zaragoza , Spain
- Centro de Investigación Biomédica en Red , CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , C/Monforte de Lemos 3-5, Pabellón 11 , 28029 Madrid , Spain
| | - Klavs F Jensen
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Kazuhiro Mae
- Department of Chemical Engineering , Kyoto University , Kyoto 615-8510 , Japan
| |
Collapse
|
28
|
Celentano M, Jakhmola A, Profeta M, Battista E, Guarnieri D, Gentile F, Netti PA, Vecchione R. Diffusion limited green synthesis of ultra-small gold nanoparticles at room temperature. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Huang H, du Toit H, Panariello L, Mazzei L, Gavriilidis A. Continuous synthesis of gold nanoparticles in micro- and millifluidic systems. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Gold nanomaterials have diverse applications ranging from healthcare and nanomedicine to analytical sciences and catalysis. Microfluidic and millifluidic reactors offer multiple advantages for their synthesis and manufacturing, including controlled or fast mixing, accurate reaction time control and excellent heat transfer. These advantages are demonstrated by reviewing gold nanoparticle synthesis strategies in flow devices. However, there are still challenges to be resolved, such as reactor fouling, particularly if robust manufacturing processes are to be developed to achieve the desired targets in terms of nanoparticle size, size distribution, surface properties, process throughput and robustness. Solutions to these challenges are more effective through a coordinated approach from chemists, engineers and physicists, which has at its core a qualitative and quantitative understanding of the synthesis processes and reactor operation. This is important as nanoparticle synthesis is complex, encompassing multiple phenomena interacting with each other, often taking place at short timescales. The proposed methodology for the development of reactors and processes is generic and contains various interconnected considerations. It aims to be a starting point towards rigorous design procedures for the robust and reproducible continuous flow synthesis of gold nanoparticles.
Graphical Abstract:
Collapse
Affiliation(s)
- He Huang
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Hendrik du Toit
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Luca Panariello
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Luca Mazzei
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| |
Collapse
|
30
|
González-Estefan JH, Gonidec M, Daro N, Marchivie M, Chastanet G. Extreme downsizing in the surfactant-free synthesis of spin-crossover nanoparticles in a microfluidic flow-focusing junction. Chem Commun (Camb) 2018; 54:8040-8043. [DOI: 10.1039/c8cc02232a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new surfactant-free, flow-focusing droplet microfluidic approach was developed as an important alternative to existing synthesis techniques for the preparation of spin crossover nanoparticles.
Collapse
|