1
|
Miyagishi HV, Kimuro Y, Ashikari Y, Nagaki A. Expanding the Scope of C-Glycoside Synthesis from Unstable Organolithium Reagents Using Flow Microreactors. Org Lett 2024; 26:5032-5036. [PMID: 38819107 DOI: 10.1021/acs.orglett.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
C-glycosides are versatile scaffolds for drugs and bioactive compounds. The common organolithium-based synthesis of C-glycosides is limited by low reaction temperatures and a restricted substrate scope. To address these issues, a flow microreactor (FMR) was utilized for rapid mixing and precise temperature control, enabling C-glycoside synthesis at temperatures up to 40 °C and expanding the substrate scope. Continuous C-glycoside synthesis was achieved with a throughput of 21.9 g h-1, demonstrating the industrial potential of FMRs.
Collapse
Affiliation(s)
- Hiromichi V Miyagishi
- Department of Chemistry, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo 060-0810, Japan
| | - Yusuke Kimuro
- Research and Development Center, Juzen Chemical Corporation, 1-10 Kiba-cho, Toyama 930-0806, Japan
| | - Yosuke Ashikari
- Department of Chemistry, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo 060-0810, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
2
|
Nakahara Y, Kawaguchi T, Matsuda Y, Endo Y, Date M, Takahashi K, Kato K, Okasora T, Ejima D, Nagaki A. Spatiotemporal Control of Protein Refolding through Flash-Change Reaction Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8483-8492. [PMID: 38618876 DOI: 10.1021/acs.langmuir.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Recombinant protein production is an essential aspect of biopharmaceutical manufacturing, with Escherichia coli serving as a primary host organism. Protein refolding is vital for protein production; however, conventional refolding methods face challenges such as scale-up limitations and difficulties in controlling protein conformational changes on a millisecond scale. In this study, we demonstrate the novel application of flow microreactors (FMR) in controlling protein conformational changes on a millisecond scale, enabling efficient refolding processes and opening up new avenues in the science of FMR technology. FMR technology has been primarily employed for small-molecule synthesis, but our novel approach successfully expands its application to protein refolding, offering precise control of the buffer pH and solvent content. Using interleukin-6 as a model, the system yielded an impressive 96% pure refolded protein and allowed for gram-scale production. This FMR system allows flash changes in the reaction conditions, effectively circumventing protein aggregation during refolding. To the best of our knowledge, this is the first study to use FMR for protein refolding, which offers a more efficient and scalable method for protein production. The study results highlight the utility of the FMR as a high-throughput screening tool for streamlined scale-up and emphasize the importance of understanding and controlling intermediates in the refolding process. The FMR technique offers a promising approach for enhancing protein refolding efficiency and has demonstrated its potential in streamlining the process from laboratory-scale research to industrial-scale production, making it a game-changing technology in the field.
Collapse
Affiliation(s)
- Yuichi Nakahara
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-Ku, Kawasaki 210-8681, Kanagawa, Japan
- Department of Chemistry, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810, Hokkaido, Japan
| | - Tomoko Kawaguchi
- Department of Chemistry, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810, Hokkaido, Japan
| | - Yutaka Matsuda
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Yuta Endo
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-Ku, Kawasaki 210-8681, Kanagawa, Japan
| | - Masayo Date
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-Ku, Kawasaki 210-8681, Kanagawa, Japan
| | - Kazutoshi Takahashi
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-Ku, Kawasaki 210-8681, Kanagawa, Japan
| | - Keisuke Kato
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-Ku, Kawasaki 210-8681, Kanagawa, Japan
| | - Takahiro Okasora
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-Ku, Kawasaki 210-8681, Kanagawa, Japan
| | - Daisuke Ejima
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-Ku, Kawasaki 210-8681, Kanagawa, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810, Hokkaido, Japan
| |
Collapse
|
3
|
Jiang Y, Yorimitsu H. Taming Highly Unstable Radical Anions and 1,4-Organodilithiums by Flow Microreactors: Controlled Reductive Dimerization of Styrenes. JACS AU 2022; 2:2514-2521. [PMID: 36465543 PMCID: PMC9709950 DOI: 10.1021/jacsau.2c00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 05/21/2023]
Abstract
The reduction of styrenes with lithium arenide in a flow microreactor leads to the instantaneous generation of highly unstable radical anions that subsequently dimerize to yield the corresponding 1,4-organodilithiums. A flow reactor with fast mixing is essential for this reductive dimerization as the efficiency and selectivity are low under batch conditions. A series of styrenes undergo dimerization, and the resulting 1,4-organodilithiums are trapped with various electrophiles. Trapping with divalent electrophiles affords precursors for useful yet less accessible cyclic structures, for example, siloles from dichlorosilanes. Thus, we highlight the power of single-electron reduction of unsaturated compounds in flow microreactors for organic synthesis.
Collapse
|
4
|
Haber J, Ausserwoeger H, Lehmann C, Pillet L, Schenkel B, Guélat B. Minimizing Material Consumption in Flow Process Research and Development: A Novel Approach Toward Robust and Controlled Mixing of Reactants. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Ashikari Y, Tamaki T, Kawaguchi T, Furusawa M, Yonekura Y, Ishikawa S, Takahashi Y, Aizawa Y, Nagaki A. Switchable Chemoselectivity of Reactive Intermediates Formation and Their Direct Use in A Flow Microreactor. Chemistry 2021; 27:16107-16111. [PMID: 34549843 DOI: 10.1002/chem.202103183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/10/2022]
Abstract
A chemoselectivity switchable microflow reaction was developed to generate reactive and unstable intermediates. The switchable chemoselectivity of this reaction enables a selection for one of two different intermediates, an aryllithium or a benzyl lithium, at will from the same starting material. Starting from bromo-substituted styrenes, the aryllithium intermediates were converted to the substituted styrenes, whereas the benzyl lithium intermediates were engaged in an anionic polymerization. These chemoselectivity-switchable reactions can be integrated to produce polymers that cannot be formed during typical polymerization reactions.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Takashi Tamaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Tomoko Kawaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Mai Furusawa
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Yuya Yonekura
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Susumu Ishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yusuke Takahashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yoko Aizawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| |
Collapse
|
6
|
Tamaki T, Nagaki A. Reaction Selectivity Control in Flash Synthetic Chemistry. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| |
Collapse
|
7
|
Lima F, Meisenbach M, Schenkel B, Sedelmeier J. Continuous flow as an enabling technology: a fast and versatile entry to functionalized glyoxal derivatives. Org Biomol Chem 2021; 19:2420-2424. [PMID: 33646230 DOI: 10.1039/d1ob00288k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We herein report two complementary strategies employing organolithium chemistry for the synthesis of glyoxal derivatives. Micro-mixer technology allows for the generation of unstable organometallic intermediates and their instantaneous in-line quenching with esters as electrophiles. Selective mono-addition was observed via putative stabilized tetrahedral intermediates. Advantages offered by flow chemistry technologies facilitate direct and efficient access to masked 1,2-dicarbonyl compounds while mitigating undesired by-product formation. These two approaches enable the production of advanced and valuable synthetic building blocks for heterocyclic chemistry with throughputs of grams per minute.
Collapse
Affiliation(s)
- Fabio Lima
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Kengo Inoue
- Department of Chemical Science and Engineering Kobe University Rokkodai, Nada, Kobe 657-8501 Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering Kobe University Rokkodai, Nada, Kobe 657-8501 Japan
| |
Collapse
|
9
|
Mao M, Zhang L, Yao H, Wan L, Xin Z. Development and Scale-up of the Rapid Synthesis of Triphenyl Phosphites in Continuous Flow. ACS OMEGA 2020; 5:9503-9509. [PMID: 32363302 PMCID: PMC7191834 DOI: 10.1021/acsomega.0c00716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
A novel method for the synthesis of triphenyl phosphite and its derivatives has been developed in continuous flow. With a total residence time of 20 s, the target product was prepared in a microreactor, and the reaction time was significantly shortened compared with standard single batch reaction conditions. In addition, the reaction of various substrates gave the corresponding products in good to excellent yields under optimized conditions. The reactants could be employed in a stoichiometric ratio, making the reaction more efficient, economical, and environmentally friendly. In addition, scale-up apparatus was designed and assembled, and the kilogram-scale production (up to 18.4 kg/h) of tris(2,4-di-tert-butylphenyl) phosphite was achieved in 88% yield.
Collapse
Affiliation(s)
- Mengmei Mao
- Shanghai Key Laboratory
of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Le Zhang
- Shanghai Key Laboratory
of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hanlin Yao
- Shanghai Key Laboratory
of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Wan
- Shanghai Key Laboratory
of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Xin
- Shanghai Key Laboratory
of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- State-Key Laboratory of Chemical Engineering,
School of Chemical Engineering, East China
University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Synthesis of Biaryls Having a Piperidylmethyl Group Based on Space Integration of Lithiation, Borylation, and Suzuki-Miyaura Coupling. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Nagaki A. Recent topics of functionalized organolithiums using flow microreactor chemistry. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|