1
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
2
|
A novel crystalline template for the structural determination of flexible chain compounds of nanoscale length. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
3
|
Chauhan P, Javed S. Crystallographic capture of caged diamondoids: Camphor and adamantanes’ guests‐encapsulation on specific recognition‐sites of host MOF. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Wang B, Bruhn JF, Weldeab A, Wilson TS, McGilvray PT, Mashore M, Song Q, Scapin G, Lin Y. Absolute configuration determination of pharmaceutical crystalline powders by MicroED via chiral salt formation. Chem Commun (Camb) 2022; 58:4711-4714. [PMID: 35293405 PMCID: PMC9004345 DOI: 10.1039/d2cc00221c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
Abstract
Microcrystal electron diffraction (MicroED) has established its complementary role alongside X-ray diffraction in crystal structure elucidation. Unfortunately, kinematical refinement of MicroED data lacks the differentiation power to assign the absolute structure solely based on the measured intensities. Here we report a method for absolute configuration determination via MicroED by employing salt formation with chiral counterions.
Collapse
Affiliation(s)
- Bo Wang
- Small Molecule Drug Product Development, Biogen, 115 Broadway, Cambridge, MA 02142, USA.
| | - Jessica F Bruhn
- NanoImaging Services, 4940 Carroll Canyon Road, San Diego, CA 92121, USA
| | - Asmerom Weldeab
- Small Molecule Drug Product Development, Biogen, 115 Broadway, Cambridge, MA 02142, USA.
| | - Timothy S Wilson
- NanoImaging Services, 4940 Carroll Canyon Road, San Diego, CA 92121, USA
| | - Philip T McGilvray
- NanoImaging Services, 4940 Carroll Canyon Road, San Diego, CA 92121, USA
| | - Michael Mashore
- NanoImaging Services, 4940 Carroll Canyon Road, San Diego, CA 92121, USA
| | - Qiong Song
- NanoImaging Services, 4940 Carroll Canyon Road, San Diego, CA 92121, USA
| | - Giovanna Scapin
- NanoImaging Services, 4940 Carroll Canyon Road, San Diego, CA 92121, USA
| | - Yiqing Lin
- Small Molecule Drug Product Development, Biogen, 115 Broadway, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Chauhan P, Javed S, Levendis DC, Fernandes M. Hydrophobicity directed guest-inclusion for structure-elucidation of enclatherated guests within a crystalline sponge by SC-XRD. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Chen P, Liu Y, Zhang C, Huang F, Liu L, Sun J. Crystalline Sponge Method by Three-Dimensional Electron Diffraction. Front Mol Biosci 2022; 8:821927. [PMID: 35198600 PMCID: PMC8859408 DOI: 10.3389/fmolb.2021.821927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
The crystalline sponge method has shown to be a novel strategy for the structure determination of noncrystalline, oily, or trace amount of a compound. A target compound was absorbed and oriented orderly in the pregrown porous crystal for x-ray diffraction analysis. However, the diffusion in the micron-sized crystals is rather difficult. Lots of trial-and-error experiments are needed to optimize the guest-soaking process and to improve data quality. Nanocrystals are better in diffusion, yet it could not conduct a single crystal x-ray diffraction (SCXRD) analysis. Three-dimensional electron diffraction (3D-ED) is a powerful diffraction tool for the structure determination of small crystals. In this work, we successfully carried out the crystalline sponge method by 3D-ED technique using {(ZnI2)3-[2,4,6-tris(4-pyridyl)-1,3,5-triazine]2·x(guest)}n (1-Guest) porous complex nanocrystals. On account of the better diffuse ability of nanocrystals, the time needed for solvent exchange and guest soaking protocols are shortened 50-fold faster versus the original protocol. The crystal structure of the crystalline sponge incorporated with three different guests was fully resolved using a merged dataset. The structure model was identical to previously reported ones using x-ray, showing that the accuracy of the 3D-ED was comparable with SCXRD. The refinement results can also give the precise occupancy of the guest molecule soaked in the porous crystal. This work not only provides a new data collection strategy for crystalline sponge method but also demonstrates the potential of 3D-ED techniques to study host-guest interaction by solving the fine structure of porous material.
Collapse
Affiliation(s)
- Pohua Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Yang Liu
- ReadCrystal Technology Co., Jiangsu, China
| | | | - Fei Huang
- ReadCrystal Technology Co., Jiangsu, China
| | | | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Zigon N, Duplan V, Wada N, Fujita M. Crystalline Sponge Method: X‐ray Structure Analysis of Small Molecules by Post‐Orientation within Porous Crystals—Principle and Proof‐of‐Concept Studies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicolas Zigon
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Vincent Duplan
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Naoki Wada
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Makoto Fujita
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Division of Advanced Molecular Science Institute for Molecular Science (IMS) 5-1 Higashiyama Myodaiji Okazaki Aichi 444-8787 Japan
| |
Collapse
|
8
|
Taniguchi Y, Kikuchi T, Sato S, Fujita M. Comprehensive Structural Analysis of the Bitter Components in Beer by the HPLC-Assisted Crystalline Sponge Method. Chemistry 2021; 28:e202103339. [PMID: 34755407 DOI: 10.1002/chem.202103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/10/2022]
Abstract
Trans-iso-α-acid is one of the main contributors to the bitter taste of fresh beer and is known to transform into various derivatives during beer aging. However, structural characterization of the derivatives has been a challenging task because of the formation of too many components. Herein, we report that most of the transformation products of trans-iso-α-acid, isolated in this study in only small quantities by HPLC, can be structurally analyzed with the crystalline sponge method. Thirteen compounds, including eight that were previously unreported, have been successfully isolated and analyzed with complete assignment of their absolute configuration. This provides an improved understanding of the chemical transformations that occur during beer aging.
Collapse
Affiliation(s)
- Yoshimasa Taniguchi
- Kirin Central Research Institute, Research & Development Division, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Integrated Molecular Structure Analysis Laboratory Social Cooperation Program, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Integrated Molecular Structure Analysis Laboratory Social Cooperation Program, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Division of Advanced Molecular Science, Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
9
|
Taniguchi Y, Miwa M, Kitada N. Crystalline sponge X-ray analysis coupled with supercritical fluid chromatography: a novel analytical platform for the rapid separation, isolation, and characterization of analytes. Analyst 2021; 146:5230-5235. [PMID: 34373868 DOI: 10.1039/d1an00948f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystalline sponge (CS) based X-ray diffraction (XRD) analysis allows for the observation of the structure of an analyte, including its absolute configuration. Herein we report a powerful analytical platform for the separation, isolation, and structural elucidation of a target analyte in a seamless way by coupling supercritical fluid chromatography (SFC) with CS-based XRD analysis (SFC-CSXRD). The efficacy of this methodology is demonstrated by the rapid characterization of regio- and stereoisomers using three types of CSs with differing tolerances to the solvents used in SFC and guest-soaking.
Collapse
Affiliation(s)
- Yoshimasa Taniguchi
- Kirin Central Research Institute, Research & Development Division, Kirin Holdings Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | | | | |
Collapse
|
10
|
Zigon N, Duplan V, Wada N, Fujita M. Crystalline Sponge Method: X-ray Structure Analysis of Small Molecules by Post-Orientation within Porous Crystals-Principle and Proof-of-Concept Studies. Angew Chem Int Ed Engl 2021; 60:25204-25222. [PMID: 34109717 DOI: 10.1002/anie.202106265] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 01/05/2023]
Abstract
This Review discusses, along with the historical background, the principles as well as proof-of-concept studies of the crystalline sponge (CS) method, a new single-crystal X-ray diffraction (SCXRD) method for the analysis of the structures of small molecules without sample crystallization. The method uses single-crystalline porous coordination networks (crystalline sponges) that can absorb small guest molecules within their pores. The absorbed guest molecules are ordered in the pores through molecular recognition and become observable by conventional SCXRD analysis. The complex {[(ZnI2 )3 (tpt)2 ]⋅x(solvent)}n (tpt=tris(4-pyridyl)-1,3,5-triazine) was first proposed as a crystalline sponge and has been most generally used. Crystalline sponges developed later are also discussed here. The principle of the CS method can be described as "post-crystallization" of the absorbed guest, whose ordering is templated by the pre-latticed cavities. The method has been widely applied to synthetic chemistry as well as natural product studies, for which proof-of-concept examples will be shown here.
Collapse
Affiliation(s)
- Nicolas Zigon
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Vincent Duplan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoki Wada
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama Myodaiji, Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
11
|
Dubey R, Yan K, Kikuchi T, Sairenji S, Rossen A, Goh SS, Feringa BL, Fujita M. Absolute Configuration Determination from Low
ee
Compounds by the Crystalline Sponge Method. Unusual Conglomerate Formation in a Pre‐Determined Crystalline Lattice. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ritesh Dubey
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-Ku Tokyo 113-8656 Japan
| | - KaKing Yan
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-Ku Tokyo 113-8656 Japan
| | - Takashi Kikuchi
- Rigaku Corporation 3-9-12 Matsubara-cho, Akishima-shi Tokyo 196-8628 Japan
| | - Shiho Sairenji
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-Ku Tokyo 113-8656 Japan
| | - Anouk Rossen
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-Ku Tokyo 113-8656 Japan
| | - Shermin S. Goh
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Makoto Fujita
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-Ku Tokyo 113-8656 Japan
| |
Collapse
|
12
|
Dubey R, Yan K, Kikuchi T, Sairenji S, Rossen A, Goh SS, Feringa BL, Fujita M. Absolute Configuration Determination from Low ee Compounds by the Crystalline Sponge Method. Unusual Conglomerate Formation in a Pre-Determined Crystalline Lattice. Angew Chem Int Ed Engl 2021; 60:11809-11813. [PMID: 33749083 DOI: 10.1002/anie.202102559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 11/08/2022]
Abstract
When chiral compounds with low enantiomeric excess (ee, R:S=m:n) were absorbed into the void of the crystalline sponge (CS), enantiomerically pure [(R)m (S)n ] chiral composites were formed, changing the centrosymmetric space group into non-centrosymmetric one. The absolute configuration of the analyte compounds was elucidated with a reasonable Flack (Parsons) parameter value. This phenomenon is characteristic to the "post-crystallization" in the pre-determined CS crystalline lattice, seldom found in common crystallization where the crystalline lattice is defined by an analyte itself. The results highlight the potential of the CS method for absolute configuration determination of low ee samples, an often encountered situation in asymmetric synthesis studies.
Collapse
Affiliation(s)
- Ritesh Dubey
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - KaKing Yan
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, 196-8628, Japan
| | - Shiho Sairenji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Anouk Rossen
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Shermin S Goh
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| |
Collapse
|
13
|
Lunn RJ, Tocher DA, Sidebottom PJ, Montgomery MG, Keates AC, Carmalt CJ. Applying the Crystalline Sponge Method to Agrochemicals: Obtaining X-ray Structures of the Fungicide Metalaxyl-M and Herbicide S-Metolachlor. CRYSTAL GROWTH & DESIGN 2021; 21:3024-3036. [PMID: 34054355 PMCID: PMC8154245 DOI: 10.1021/acs.cgd.1c00196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The crystalline sponge method is a technique that provides the ability to elucidate the absolute structure of noncrystalline or hard to crystallize compounds through single-crystal X-ray diffraction by removing the need to obtain crystals of the target compound. In this study the crystalline sponges {[(ZnX2)3(2,4,6-tris(4-pyridyl)-1,3,5-trazine)2].x(solvent)} n (X = I, Br) were used to obtain X-ray structures of the agrochemical active ingredients metalaxyl-M and S-metolachlor. The effect of the temperature used during guest uptake and the influence of changing the host framework ZnX2 nodes on guest encapsulation were investigated. Additionally, three compounds containing chemical fragments similar to those of metalaxyl-M and S-metolachlor (phenylacetaldehyde, N-ethyl-o-toluidine, and methyl phenylacetate) were also encapsulated. This allowed for the effect of guest size on the position that guests occupy within the host frameworks to be examined. The disorder experienced by the guest compounds was documented, and an analysis of the intermolecular host-guest interactions (CH···π and π ···π) used for guest ordering within the host frameworks was also undertaken in this study.
Collapse
Affiliation(s)
- Richard
D. J. Lunn
- University
College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Derek A. Tocher
- University
College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Philip J. Sidebottom
- Syngenta,
Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K.
| | - Mark G. Montgomery
- Syngenta,
Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K.
| | - Adam C. Keates
- Syngenta,
Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K.
| | - Claire J. Carmalt
- University
College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
14
|
Cardenal A, Ramadhar TR. Application of Crystalline Matrices for the Structural Determination of Organic Molecules. ACS CENTRAL SCIENCE 2021; 7:406-414. [PMID: 33791424 PMCID: PMC8006175 DOI: 10.1021/acscentsci.0c01492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 06/12/2023]
Abstract
While single-crystal X-ray diffraction (SC-XRD) is one of the most powerful structural determination techniques for organic molecules, the requirement of obtaining a suitable crystal for analysis limits its applicability, particularly for liquids and amorphous solids. The emergent use of preformed porous crystalline matrices that can absorb organic compounds and stabilize them via host-guest interactions for observation via SC-XRD offers a way to overcome this hindrance. A topical and current discussion of SC-XRD in organic chemistry and the use of preformed matrices for the in crystallo analysis of organic compounds, with a particular focus on the absolute structure determination of chiral molecules, is presented. Preformed crystalline matrices that are covered include metal-organic frameworks (MOFs) as used in the crystalline sponge method, metal-organic polyhedra (MOPs, coordination cages), porous organic materials (POMs)/porous organic molecular crystals (POMCs), and biological scaffolds. An outlook and perspective on the current technology and on its future directions is provided.
Collapse
Affiliation(s)
- Ashley
D. Cardenal
- Department of Chemistry, Howard University, Washington, DC 20059, United States
| | - Timothy R. Ramadhar
- Department of Chemistry, Howard University, Washington, DC 20059, United States
| |
Collapse
|
15
|
Albalad J, Sumby CJ, Maspoch D, Doonan CJ. Elucidating pore chemistry within metal–organic frameworks via single crystal X-ray diffraction; from fundamental understanding to application. CrystEngComm 2021. [DOI: 10.1039/d1ce00067e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The application of metal–organic frameworks (MOFs) to diverse chemical sectors is aided by their crystallinity, which permits the use of X-ray crystallography to characterise their pore chemistry and provides invaluable insight into their properties.
Collapse
Affiliation(s)
- Jorge Albalad
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Christopher J. Sumby
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- Barcelona Institute of Science and Technology
- Barcelona
- Spain
| | - Christian J. Doonan
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
16
|
Saito F, Schreiner PR. Determination of the Absolute Configurations of Chiral Alkanes – An Analysis of the Available Tools. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fumito Saito
- Institute of Organic Chemistry Justus Liebig University Heinrich‐Buff‐Ring 17 35392 Giessen Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry Justus Liebig University Heinrich‐Buff‐Ring 17 35392 Giessen Germany
| |
Collapse
|
17
|
Saito F, Gerbig D, Becker J, Schreiner PR. Absolute Configuration of trans-Perhydroazulene. Org Lett 2020; 22:3895-3899. [DOI: 10.1021/acs.orglett.0c01184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fumito Saito
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Dennis Gerbig
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
18
|
Balestri D, Mazzeo PP, Carraro C, Demitri N, Pelagatti P, Bacchi A. Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal-Organic Framework. Angew Chem Int Ed Engl 2019; 58:17342-17350. [PMID: 31549464 DOI: 10.1002/anie.201907621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Indexed: 11/12/2022]
Abstract
The crystalline sponge method (CSM) is primarily used for structural determination by single-crystal X-ray diffraction of a single analyte encapsulated inside a porous MOF. As the host-guest systems often show severe disorder, reliable crystallographic determination is demanding; thus the dynamics of the guest entering and the formation of nanoconfined molecular aggregates has not been in the spotlight. Now, the concept is investigated of the CSM for monitoring the structural evolution of nanoconfined supramolecular aggregates of eugenol guests with displacement of DMF inside the cavities of the flexible MOF, PUM168. The interpretation of the electron density provides a series of unique detailed snapshots depicting the supramolecular guest aggregation, thus showing the tight interplay between the host flexible skeleton and the molecular guests through the DMF-to-eugenol exchange process.
Collapse
Affiliation(s)
- Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale delle Scienze, 17A, 43124, Parma, Italy
| | - Paolo P Mazzeo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale delle Scienze, 17A, 43124, Parma, Italy.,Biopharmanet-TEC, Università degli studi di Parma, via Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Claudia Carraro
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale delle Scienze, 17A, 43124, Parma, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza-, Trieste, Italy
| | - Paolo Pelagatti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale delle Scienze, 17A, 43124, Parma, Italy.,Centro Interuniveristario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Alessia Bacchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale delle Scienze, 17A, 43124, Parma, Italy.,Biopharmanet-TEC, Università degli studi di Parma, via Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
19
|
Balestri D, Mazzeo PP, Carraro C, Demitri N, Pelagatti P, Bacchi A. Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Viale delle Scienze, 17A 43124 Parma Italy
| | - Paolo P. Mazzeo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Viale delle Scienze, 17A 43124 Parma Italy
- Biopharmanet-TECUniversità degli studi di Parma via Parco Area delle Scienze 27/A 43124 Parma Italy
| | - Claudia Carraro
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Viale delle Scienze, 17A 43124 Parma Italy
| | - Nicola Demitri
- Elettra—Sincrotrone Trieste S.S. 14 Km 163.5 in Area Science Park 34149 Basovizza— Trieste Italy
| | - Paolo Pelagatti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Viale delle Scienze, 17A 43124 Parma Italy
- Centro Interuniveristario di Reattività Chimica e Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Alessia Bacchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di Parma Viale delle Scienze, 17A 43124 Parma Italy
- Biopharmanet-TECUniversità degli studi di Parma via Parco Area delle Scienze 27/A 43124 Parma Italy
| |
Collapse
|
20
|
Abstract
Host-guest interactions are the key to the supramolecular chemistry and the further application of the receptors to study the structural details of the small guest molecules. Crystalline sponges as a kind of supramolecular receptor need to be investigated in terms of the binding ability with the guests. We found in this work that one guest with σ-hole donors and another with electron-donating species were separately entrapped in two distinct channels of the host framework via the crystalline sponge method. Halogen bonding and weak hydrogen bonding were detected between the host and the two guests, respectively. The ability of the crystalline sponge to absorb and sort guests of different types was unambiguously confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Liangqian Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry , Central China Normal University , Luoyu Road 152 , Wuhan 430079 , People's Republic of China
| | - Siyu Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry , Central China Normal University , Luoyu Road 152 , Wuhan 430079 , People's Republic of China
| | - Fangfang Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry , Central China Normal University , Luoyu Road 152 , Wuhan 430079 , People's Republic of China
| |
Collapse
|
21
|
Yang S, Bian G, Sa R, Song L. Assigning the Absolute Configurations of Chiral Primary Amines Based on Experimental and DFT-Calculated 19F Nuclear Magnetic Resonance. Front Chem 2019; 7:318. [PMID: 31165055 PMCID: PMC6536038 DOI: 10.3389/fchem.2019.00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022] Open
Abstract
In this work, a novel method for assigning the absolute configuration of a chiral primary amine has been developed based on the experimental and DFT-calculated 19F NMR chemical shift differences of its derived two fluorinated amides by reacting with two enantiomers of a chiral derivatizing agent FPP (α-fluorinated phenylacetic phenylselenoester) separately. Comparing the experimental chemical shift difference Δ δ α - F R , S of (R)-FPA-amide/(S)-FPA-amide with the calculated Δδα-F R,S of (R)-FPA-(R)-amide/(S)-FPA-(R)-amide, if the experimental Δδα-F R,S has the same symbol (positive or negative) as one of the theoretical Δδα-F R,S , the assigned configuration of the amine is considered to be consistent with the theoretical one. Our method could be applied to a broad substrate scope avoiding wrong conclusion due to empirical judgment.
Collapse
Affiliation(s)
- Shiwei Yang
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangling Bian
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rongjian Sa
- Institute of Oceanography, Ocean College, Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, China
| | - Ling Song
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Li K, Yang DS, Gu XF, Di B. Absolute configuration determination of asarinin by synchrotron radiation with crystalline sponge method. Fitoterapia 2019; 134:135-140. [DOI: 10.1016/j.fitote.2019.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 11/25/2022]
|
23
|
Qiu QF, Chen CX, Wei ZW, Cao CC, Zhu NX, Wang HP, Wang D, Jiang JJ, Su CY. A Flexible Cu-MOF as Crystalline Sponge for Guests Determination. Inorg Chem 2018; 58:61-64. [DOI: 10.1021/acs.inorgchem.8b02993] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qian-feng Qiu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Cheng-Xia Chen
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhang-Wen Wei
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chen-Chen Cao
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Neng-Xiu Zhu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Hai-Ping Wang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dawei Wang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ji-Jun Jiang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Cheng-Yong Su
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Shanghai Institute of Organic Chemistry, Shanghai, 200032, P. R. China
| |
Collapse
|
24
|
Wada N, Kersten RD, Iwai T, Lee S, Sakurai F, Kikuchi T, Fujita D, Fujita M, Weng JK. Crystalline-Sponge-Based Structural Analysis of Crude Natural Product Extracts. Angew Chem Int Ed Engl 2018; 57:3671-3675. [DOI: 10.1002/anie.201713219] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Naoki Wada
- Department of Applied Chemistry; Graduate School of Engineering; The University of Tokyo, and JST- ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Roland D. Kersten
- Whitehead Institute for Biomedical Research; 455 Main Street Cambridge MA USA
| | - Takahiro Iwai
- Department of Applied Chemistry; Graduate School of Engineering; The University of Tokyo, and JST- ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shoukou Lee
- Department of Applied Chemistry; Graduate School of Engineering; The University of Tokyo, and JST- ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Fumie Sakurai
- Department of Applied Chemistry; Graduate School of Engineering; The University of Tokyo, and JST- ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Kikuchi
- Rigaku Corporation; 3-9-12 Matsubara-cho, Akishima-shi Tokyo 196-8628 Japan
| | - Daishi Fujita
- Department of Applied Chemistry; Graduate School of Engineering; The University of Tokyo, and JST- ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Whitehead Institute for Biomedical Research; 455 Main Street Cambridge MA USA
| | - Makoto Fujita
- Department of Applied Chemistry; Graduate School of Engineering; The University of Tokyo, and JST- ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research; 455 Main Street Cambridge MA USA
- Department of Biology; Massachusetts Institute of Technology; Cambridge MA USA
| |
Collapse
|
25
|
Wada N, Kersten RD, Iwai T, Lee S, Sakurai F, Kikuchi T, Fujita D, Fujita M, Weng JK. Crystalline-Sponge-Based Structural Analysis of Crude Natural Product Extracts. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Naoki Wada
- Department of Applied Chemistry; Graduate School of Engineering; The University of Tokyo, and JST- ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Roland D. Kersten
- Whitehead Institute for Biomedical Research; 455 Main Street Cambridge MA USA
| | - Takahiro Iwai
- Department of Applied Chemistry; Graduate School of Engineering; The University of Tokyo, and JST- ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shoukou Lee
- Department of Applied Chemistry; Graduate School of Engineering; The University of Tokyo, and JST- ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Fumie Sakurai
- Department of Applied Chemistry; Graduate School of Engineering; The University of Tokyo, and JST- ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Kikuchi
- Rigaku Corporation; 3-9-12 Matsubara-cho, Akishima-shi Tokyo 196-8628 Japan
| | - Daishi Fujita
- Department of Applied Chemistry; Graduate School of Engineering; The University of Tokyo, and JST- ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Whitehead Institute for Biomedical Research; 455 Main Street Cambridge MA USA
| | - Makoto Fujita
- Department of Applied Chemistry; Graduate School of Engineering; The University of Tokyo, and JST- ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research; 455 Main Street Cambridge MA USA
- Department of Biology; Massachusetts Institute of Technology; Cambridge MA USA
| |
Collapse
|
26
|
Gee WJ. The growing importance of crystalline molecular flasks and the crystalline sponge method. Dalton Trans 2018; 46:15979-15986. [PMID: 29106430 DOI: 10.1039/c7dt03136j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article showcases recent advancements made using crystalline molecular flasks and the widening list of prospective applications for the crystalline sponge method. This expansion has coincided with an increasing number of materials termed crystalline sponges, and a report of a predictive means of identifying candidates from crystallographic databases. The crystalline sponge method's primary application has been determination of absolute configuration, and this has evolved from the analysis of carefully chosen planar aromatic guests to more diverse identification of natural products, biological metabolites, and analysis of volatile chemical components. However with time-resolved X-ray crystallography providing arguably the most informative atomic scale insights of dynamic chemical processes, this application of the crystalline sponge method may soon eclipse structural determination in terms of importance.
Collapse
Affiliation(s)
- William J Gee
- School of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
27
|
Sakurai F, Khutia A, Kikuchi T, Fujita M. X‐ray Structure Analysis of N‐Containing Nucleophilic Compounds by the Crystalline Sponge Method. Chemistry 2017; 23:15035-15040. [DOI: 10.1002/chem.201704176] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Fumie Sakurai
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Tokyo Bunkyo-ku 113–8656 Japan
| | - Anupam Khutia
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Tokyo Bunkyo-ku 113–8656 Japan
| | - Takashi Kikuchi
- Rigaku Corporation 3-9-12 Matsubara-cho Tokyo Akishima-shi 196–8628 Japan
| | - Makoto Fujita
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Tokyo Bunkyo-ku 113–8656 Japan
| |
Collapse
|
28
|
Yan K, Dubey R, Arai T, Inokuma Y, Fujita M. Chiral Crystalline Sponges for the Absolute Structure Determination of Chiral Guests. J Am Chem Soc 2017; 139:11341-11344. [DOI: 10.1021/jacs.7b06607] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- KaKing Yan
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, and ACCEL (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ritesh Dubey
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, and ACCEL (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuhiko Arai
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, and ACCEL (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuhide Inokuma
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, and ACCEL (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Fujita
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, and ACCEL (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
29
|
Abozeid MA, Sairenji S, Takizawa S, Fujita M, Sasai H. Enantioselective synthesis of tetrahydrocyclopenta[b]indole bearing a chiral quaternary carbon center via Pd(ii)–SPRIX-catalyzed C–H activation. Chem Commun (Camb) 2017; 53:6887-6890. [DOI: 10.1039/c7cc03199h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pd(ii)–SPRIX promotes the first highly enantioselective cyclization of 3-alkenylindoles into the corresponding indoles bearing a chiral quaternary carbon center via C–H activation and an assisting effect by the allyl substituent.
Collapse
Affiliation(s)
- Mohamed Ahmed Abozeid
- The Institute of Scientific and Industrial Research (ISIR)
- Osaka University
- Ibaraki-shi
- Japan
- Department of Chemistry
| | - Shiho Sairenji
- Department of Applied Chemistry
- Graduate School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Shinobu Takizawa
- The Institute of Scientific and Industrial Research (ISIR)
- Osaka University
- Ibaraki-shi
- Japan
| | - Makoto Fujita
- Department of Applied Chemistry
- Graduate School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial Research (ISIR)
- Osaka University
- Ibaraki-shi
- Japan
| |
Collapse
|