1
|
Zhang H, Gao G, Fan Y, Zhi J. Revisiting the catalytic activity of single horseradish peroxidase clusters through electrochemical collision technique: Effect of electrolyte and substrate. Talanta 2025; 282:126951. [PMID: 39357400 DOI: 10.1016/j.talanta.2024.126951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Horseradish peroxidase (HRP) is a versatile biosensing label and signal reporter owing to its broad-spectrum catalytic ability. In present work, we characterized HRP's catalytic performance with various substrates using electrochemical collision technique and analyzed the associated electron transfer processes. Different electrolyte solutions greatly affected enzyme dispersibility and zeta potential, thereby impacting HRP collision dynamics in single H2O2 substrate system. The maximum turnover number (kcat) for single HRP molecules was calculated to be 3.611 ± 0.149 × 103 s-1 in 0.85 % NaCl and 2.967 ± 0.286 × 103 s-1 in 0.1 M PBS solution, reflecting differences in cluster size induced by the electrolyte conditions. More severe agglomeration of HRP molecules was observed in double-substrate systems, where the hydrophilic mediator (K4Fe(CN)6) and lipophilic mediator (ABTS) served as electron donors and signal reporters. The calculated kcat value of single HRP molecules in ABTS-H2O2 was 7.6 times higher than that in K4Fe(CN)6-H2O2. This difference is attributed to mediators' solubility, lipophilicity, and HRP's affinity for different substrates, with HRP demonstrated stronger affinity for ABTS-H2O2 substrates, which realized more efficient electron transfer and compensated for the low diffusion coefficient of ABTS. This work provides a comprehensive analysis of the effects of electrolytes and substrates on HRP collision and catalytic behavior, offering valuable insights for the advanced design of HRP-based biosensors and diagnostic platforms.
Collapse
Affiliation(s)
- Hanxin Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yining Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
2
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Ding Q, Sun Z, Ma W. Probing conformational kinetics of catalase with and without magnetic field by single-entity collision electrochemistry. Sci Bull (Beijing) 2023; 68:2564-2573. [PMID: 37718236 DOI: 10.1016/j.scib.2023.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023]
Abstract
The conformational motions of enzymes are crucial for their catalytic activities, but these fluctuations are usually spontaneous and unsynchronized and thus difficult to obtain from ensemble-averaged measurements. Here, we employ label-free single-entity electrochemical measurements to monitor in real time the fluctuating enzymatic behavior of single catalase molecules toward the degradation of hydrogen peroxide. By probing the electrochemical signals of single catalase molecules at a carbon nanoelectrode, we were able to observe three distinct current traces that could be attributed to conformational changes on the sub-millisecond timescale. Whereas, nearly uniform single long peaks were observed for single catalase molecules under a moderate magnetic field due to the restricted conformational changes of catalase. By combining high-resolution current signals with a multiphysics simulation model, we studied the catalytic kinetics of catalase with and without a magnetic field, and further estimated the maximum catalytic rate and conformational transition rate. This work introduces a new complementary approach to existing single-molecule enzymology, giving further insight into the enzymatic reaction mechanism.
Collapse
Affiliation(s)
- Qingdan Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zehui Sun
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Qiu X, Dai Q, Tang H, Li Y. Multiplex Assays of MicroRNAs by Using Single Particle Electrochemical Collision in a Single Run. Anal Chem 2023; 95:13376-13384. [PMID: 37603691 DOI: 10.1021/acs.analchem.3c02892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
It is important to quantify multiple biomarkers in a single run due to the advantages of precious samples and diagnostic accuracy. Based on the distinguishability of two types of current signals from single particle electrochemical collision (SPEC), step-type current transients produced by Pt nanoparticles (PtNPs) catalyzed hydrazine oxidation and peak-type current transients produced by Ag nanoparticles (AgNPs) oxidation, a kind of multiplex immunoassay of target microRNAs (miRNA-21 and Let-7a) have been established during SPEC in a single run. When the single-stranded DNA (ssDNA1) that was perfectly complementary to miRNA-21 was coupled to the surface of PtNPs, the SPEC of PtNPs electrocatalysis was inhibited and the step-type current transients disappeared, while the single-stranded DNA (ssDNA2) that was perfectly complementary to Let-7a was coupled to the surface of AgNPs, the SPEC of AgNPs oxidation was inhibited, and the peak-type current transients disappeared, thus the signals were in the "off" state at this time. After that, miRNA-21 and Let-7a were added into solution, complementary base pairing disrupted the weak DNA-NP interaction and restored the electrocatalysis of PtNPs and the electrooxidation of AgNPs, and the step-type current signals and peak-type current signals were in the "on" state. Moreover, the frequencies from two different recovered signals (PtNPs catalysis and AgNPs oxidation) corresponded to the amount of added miRNA-21 and Let-7a, thus a multiplex immunoassay method for dual quantification of miRNA-21 and Let-7a in a single run was established.
Collapse
Affiliation(s)
- Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Qingshan Dai
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| |
Collapse
|
5
|
Dery L, Dery S, Gross E, Mandler D. Influence of Charged Self-Assembled Monolayers on Single Nanoparticle Collision. Anal Chem 2023; 95:2789-2795. [PMID: 36700557 PMCID: PMC9909668 DOI: 10.1021/acs.analchem.2c04081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Studying nanoparticle (NP)-electrode interactions in single nanoparticle collision events is critical to understanding dynamic processes such as nanoparticle motion, adsorption, oxidation, and catalytic activity, which are abundant on electrode surfaces. Herein, NP-electrode electrostatic interactions are studied by tracking the oxidation of AgNPs at Au microelectrodes functionalized with charged self-assembled monolayers (SAMs). Tuning the charge of short alkanethiol-based monolayers and selecting AgNPs that can be partially or fully oxidized upon impact enabled probing the influence of attractive and repulsive NP-electrode electrostatic interactions on collision frequency, electron transfer, and nanoparticle sizing. We find that repulsive electrostatic interactions lead to a significant decrease in collision frequency and erroneous nanoparticle sizing. In stark difference, attractive electrostatic interactions dramatically increase the collision frequency and extend the sizing capability to larger nanoparticle sizes. Thus, these findings demonstrate how NP-monolayer interactions can be studied and manipulated by combining nanoimpact electrochemistry and functionalized SAMs.
Collapse
Affiliation(s)
- Linoy Dery
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel,The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Shahar Dery
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel,The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Elad Gross
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel,The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Daniel Mandler
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel,The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel,
| |
Collapse
|
6
|
Ma H, Zhong CB, Ying YL, Long YT. Seeing Is Not Believing: Filtering Effects on Random Nature in Electrochemical Measurements of Single-Entity Collision. ACS MEASUREMENT SCIENCE AU 2022; 2:325-331. [PMID: 36785567 PMCID: PMC9885945 DOI: 10.1021/acsmeasuresciau.2c00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To clarify the discrete nature of electrochemistry, single-entity electrochemistry of collision (SEEC) utilizes a confinement space in a nanoscale local electric field at a microscale electrode interface for characterizing single freely diffusing entities. This promising method provides new insights at the single entity level. However, the precise measurement is challenging because of the short residence time and wide current fluctuations caused by the dynamic and stochastic motion of a single entity at the interface of the electrode. Moreover, the enormous noise in the electrochemical system would submerge these weak transient electrochemical signals. To increase the signal-to-noise ratio, the low-pass filter (LPF) is often used but at the cost of lower temporal resolution. Therefore, a deeper understanding of the filtering effects on the electrochemical signal is required in SEEC. Here, we build a random walk model to simulate the dynamic electrochemical oxidation of individual silver nanoparticles (AgNPs) in the local electric field near the electrode. This model considers the effect of the effective potential during the interaction between NP and electrode. Results reveal that the shape of the signal is seriously distorted as the cutoff frequency (f c) of LPF is set at <20 kHz. Due to the filtering effects, hundreds of subpeaks originating from the dynamic motion of NP are merged in a simple peak, which muddies our "believing" from the "seeing" signals. However, the entire interaction time of single NPs with the electrodes can be acquired at f c ≥ 10 kHz. Moreover, an integral charge of the signal is conserved at any LPF, which enables quantitative analysis of SEEC. Our understanding of the filtering effect on single AgNPs oxidation is generally applicable to nano-electrochemical techniques (e.g., nanopore electrochemistry and nanopipette sensing) that generate transient current signals.
Collapse
Affiliation(s)
- Hui Ma
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
| | - Cheng Bing Zhong
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
| | - Yi-Lun Ying
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
- Chemistry
and Biomedicine Innovation Center, Nanjing
University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Shen X, Liu R, Wang D. Nanoconfined Electrochemical Collision and Catalysis of Single Enzyme inside Carbon Nanopipettes. Anal Chem 2022; 94:8110-8114. [PMID: 35648840 DOI: 10.1021/acs.analchem.2c01554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Revealing the electrocatalytic features of single redox enzyme is significant to both fundamental biological processes and practical catalysis and sensing applications. Herein, we directly reveal the electrocatalytic current from a single enzyme inside the carbon nanopipettes via electrochemical collision strategies, based on the increased activity at nanoscale confinement. Besides the staircase current steps from surface blockage, discrete H2O2 oxidation and reduction current transients catalyzed by a single enzyme are also displayed and analyzed. The carbon nanopipette would increase the catalytic activities of enzymes and lead to a detectable current response, thus opening a new way to investigate the fundamental enzymatic mechanisms at the single enzyme level.
Collapse
Affiliation(s)
- Xiaoyue Shen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
|
10
|
Zhao XH, Zhou YG. Rapid and Accurate Data Processing for Silver Nanoparticle Oxidation in Nano-Impact Electrochemistry. Front Chem 2021; 9:718000. [PMID: 34381763 PMCID: PMC8350773 DOI: 10.3389/fchem.2021.718000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
In recent years, nano-impact electrochemistry (NIE) has attracted widespread attention as a new electroanalytical approach for the analysis and characterization of single nanoparticles in solution. The accurate analysis of the large volume of the experimental data is of great significance in improving the reliability of this method. Unfortunately, the commonly used data analysis approaches, mainly based on manual processing, are often time-consuming and subjective. Herein, we propose a spike detection algorithm for automatically processing the data from the direct oxidation of sliver nanoparticles (AgNPs) in NIE experiments, including baseline extraction, spike identification and spike area integration. The resulting size distribution of AgNPs is found to agree very well with that from transmission electron microscopy (TEM), showing that the current algorithm is promising for automated analysis of NIE data with high efficiency and accuracy.
Collapse
Affiliation(s)
- Xi-Han Zhao
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
11
|
Tang H, Wang H, Du J, Zhao D, Cao M, Li Y. Intrinsic Catalytic Activities from Single Enzyme@Metal-Organic Frameworks by Using a Stochastic Collision Electrochemical Technique. J Phys Chem Lett 2021; 12:5443-5447. [PMID: 34081461 DOI: 10.1021/acs.jpclett.1c01389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzymes encapsulated in metal-organic frameworks (enzyme@MOFs), as a promising immobilized enzyme, were investigated for intrinsic catalytic activities at the single entity level via a stochastic collision electrochemical technique. Zeolitic imidazolate frameworks with amorphous (aZIF-8) and crystalline (ZIF-8) structures were chosen as model MOFs to encapsulate glucose oxidase (GOx). We carried out single enzyme@MOF nanoparticle (NP) collision experiments using the carbon ultramicroelectrode (CUME), which demonstrated that the catalytic activity of GOx@ZIF-8 NPs was much less than GOx@aZIF-8 NPs. Meanwhile, the kcat and TON per GOx in aZIF-8 NPs were obtained, revealing the intrinsic catalytic activity of GOx in aZIF-8 NPs at the single entity level. This strategy is the first approach for investigating enzyme@MOFs at a single entity level, which can not only broaden the horizons of single entity electrochemistry (SEE) but also provide further insights into research on electrochemistry, catalysis, and nanocomposites.
Collapse
Affiliation(s)
- Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Hao Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Jiahao Du
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Dandan Zhao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Mengya Cao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
12
|
Abstract
Traditional studies of enzymatic activity rely on the combined kinetics of millions of enzyme molecules to produce a product, an experimental approach that may wash out heterogeneities that exist between individual enzymes. Evaluating these properties on an enzyme-by-enzyme basis represents an unambiguous means of elucidating heterogeneities; however, the quantification of enzymatic activity at the single-enzyme level is fundamentally limited by the maximum catalytic rate, kcat, inherent to a given enzyme. For electrochemical methods measuring current, single enzymes must turn over greater than 107 molecules per second to produce a measurable signal on the order of 10-12 A. Enzymes with this capability are extremely rare in nature, with typical kcat values for biologically relevant enzymes falling between 1 and 10 000 s-1. Thus, clever amplification strategies are necessary to electrochemically detect the vast majority of enzymes. This review details the progress toward the electroanalytical detection and evaluation of single enzyme kinetics largely focused on the nanoimpact method, a chronoamperometric detection strategy that monitors the change in the current-time profile associated with stochastic collisions of freely diffusing entities (e.g., enzymes) onto a microelectrode or nanoelectrode surface. We discuss the experimental setups and methods developed in the last decade toward the quantification of single molecule enzymatic rates. Special emphasis is given to the limitations of measurement science in the observation of single enzyme activity and feasible methods of signal amplification with reasonable bandwidth.
Collapse
Affiliation(s)
- Kathryn J Vannoy
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Andrey Ryabykh
- Department of Physical and Inorganic Chemistry, Altai State University, Barnaul, Altai Krai, Russia656049
| | - Andrei I Chapoval
- Russian-American Anti-Cancer Center, Altai State University, Barnaul, Altai Krai, Russia656049
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. and Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Peng Y, Ren Y, Zhu H, An Y, Chang B, Sun T. Ultrasmall copper nanoclusters with multi-enzyme activities. RSC Adv 2021; 11:14517-14526. [PMID: 35424001 PMCID: PMC8697926 DOI: 10.1039/d1ra01410b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/12/2021] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) as a key messenger of signal transduction mediate physiological activities, however, oxidative stress produced by excessive ROS can cause the destruction of cell homeostasis, which will result in a series of diseases. Therefore, effective control of ROS level is critical to the homeostasis of the cell. Here, we reported that glutathione (GSH)-stabilized copper nanoclusters (CuNCs) with about 9 Cu atoms can functionally mimic three major antioxidant enzymes, namely catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD). The rate of H2O2 decomposition was calculated to be ∼0.23 mg L-1 s-1 when the concentration of CuNCs was 100 μg mL-1. The SOD-like activity by catalyzing the disproportionation of superoxide to H2O2 and O2 reached 25.6 U mg-1 when the effective inhibition rate was ∼55.4%. Intracellular ROS scavenging studies further identified that CuNCs can obviously protect cells from oxidative stress and the cell viability recovered to above 90%. Hence, we expect that ultrasmall CuNCs will provide good therapeutic potential in the future treatment of ROS-related diseases.
Collapse
Affiliation(s)
- Yangbin Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 PR China
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University Shenyang 110004 P. R. China
| | - Hao Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 PR China
| | - Yu An
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 PR China
| | - Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 PR China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 PR China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 PR China
| |
Collapse
|
14
|
Chen Y, Wang D, Liu Y, Gao G, Zhi J. Redox activity of single bacteria revealed by electrochemical collision technique. Biosens Bioelectron 2020; 176:112914. [PMID: 33353760 DOI: 10.1016/j.bios.2020.112914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
This paper reports on an innovative strategy based on the electrochemical collision technique to quantify the redox activity of two bacterial species: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. Thionine (TH), as a redox mediator, was electrostatically adsorbed on bacterial surface and formed the bacterium-TH complexes. TH can receive electrons from bacterial metabolic pathways and be reduced. When a single bacterium-TH complex collides on the ultramicroelectrode, the reduced TH will be re-oxidized at certain potential and generate current spike. The frequency of the spikes is linearly proportional to the living bacteria concentration, and the redox activity of individual bacterium can be quantified by the charges enclosed in the current spike. The redox ability of Gram-negative E.coli to the TH mediator was 6.79 ± 0.26 × 10-18 mol per bacterial cell in 30 min, which is relatively more reactive than B. subtilis (3.52 ± 0.31 × 10-18 mol per cell). The spike signals, fitted by 3D COMSOL Multiphysics simulation, revealed that there is inherent redox ability difference of two bacterial strains besides the difference in bacterial size and collision position. This work successfully quantified the bacterial redox activity to mediator in single cells level, which is of great significance to improve understanding of heterogeneous electron transfer process and build foundations to the microorganism selection in the design of microbial electrochemical devices.
Collapse
Affiliation(s)
- Yafei Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanran Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
15
|
Sokolov SV, Compton RG. Visions of the electrochemical future, past and present: Plus ca change? J Solid State Electrochem 2020; 24:2059-2061. [PMID: 32837294 PMCID: PMC7259873 DOI: 10.1007/s10008-020-04664-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/03/2022]
Affiliation(s)
| | - Richard G Compton
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ UK
| |
Collapse
|
16
|
Nguyen THT, Lee J, Kim HY, Nam KM, Kim BK. Current research on single-entity electrochemistry for soft nanoparticle detection: Introduction to detection methods and applications. Biosens Bioelectron 2020; 151:111999. [DOI: 10.1016/j.bios.2019.111999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
17
|
|
18
|
|
19
|
Xu W, Zou G, Hou H, Ji X. Single Particle Electrochemistry of Collision. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804908. [PMID: 30740883 DOI: 10.1002/smll.201804908] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/21/2018] [Indexed: 05/23/2023]
Abstract
A novel electrochemistry method using stochastic collision of particles at microelectrode to study their performance in single-particle scale has obtained remarkable development in recent years. This convenient and swift analytical method, which can be called "nanoimpact," is focused on the electrochemical process of the single particle rather than in complex ensemble systems. Many researchers have applied this nanoimpact method to investigate various kinds of materials in many research fields, including sensing, electrochemical catalysis, and energy storage. However, the ways how they utilize the method are quite different and the key points can be classified into four sorts: sensing particles at ultralow concentration, theory optimization, kinetics of mediated catalytic reaction, and redox electrochemistry of the particles. This review gives a brief overview of the development of the nanoimpact method from the four aspects in a new perspective.
Collapse
Affiliation(s)
- Wei Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
20
|
Kornienko N, Ly KH, Robinson WE, Heidary N, Zhang JZ, Reisner E. Advancing Techniques for Investigating the Enzyme-Electrode Interface. Acc Chem Res 2019; 52:1439-1448. [PMID: 31042353 PMCID: PMC6533600 DOI: 10.1021/acs.accounts.9b00087] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Enzymes are the essential catalytic components of biology and adsorbing
redox-active enzymes on electrode surfaces enables the direct probing
of their function. Through standard electrochemical measurements,
catalytic activity, reversibility and stability, potentials of redox-active
cofactors, and interfacial electron transfer rates can be readily
measured. Mechanistic investigations on the high electrocatalytic
rates and selectivity of enzymes may yield inspiration for the design
of synthetic molecular and heterogeneous electrocatalysts. Electrochemical
investigations of enzymes also aid in our understanding of their activity
within their biological environment and why they evolved in their
present structure and function. However, the conventional array of
electrochemical techniques (e.g., voltammetry and chronoamperometry)
alone offers a limited picture of the enzyme–electrode interface. How many enzymes are loaded onto an electrode? In which orientation(s)
are they bound? What fraction is active, and are single or multilayers
formed? Does this static picture change over time, applied voltage,
or chemical environment? How does charge transfer through various
intraprotein cofactors contribute to the overall performance and catalytic
bias? What is the distribution of individual enzyme activities within
an ensemble of active protein films? These are central questions for
the understanding of the enzyme–electrode interface, and a
multidisciplinary approach is required to deliver insightful answers. Complementing standard electrochemical experiments with an orthogonal
set of techniques has recently allowed to provide a more complete
picture of enzyme–electrode systems. Within this framework,
we first discuss a brief history of achievements and challenges in
enzyme electrochemistry. We subsequently describe how the aforementioned
challenges can be overcome by applying advanced electrochemical techniques,
quartz-crystal microbalance measurements, and spectroscopic, namely,
resonance Raman and infrared, analysis. For example, rotating ring
disk electrochemistry permits the simultaneous determination of reaction
kinetics and quantification of generated products. In addition, recording
changes in frequency and dissipation in a quartz crystal microbalance
allows to shed light into enzyme loading, relative orientation, clustering,
and denaturation at the electrode surface. Resonance Raman spectroscopy
yields information on ligation and redox state of enzyme cofactors,
whereas infrared spectroscopy provides insights into active site states
and the protein secondary and tertiary structure. The development
of these emerging methods for the analysis of the enzyme–electrode
interface is the primary focus of this Account. We also take a critical
look at the remaining gaps in our understanding and challenges lying
ahead toward attaining a complete mechanistic picture of the enzyme–electrode
interface.
Collapse
Affiliation(s)
- Nikolay Kornienko
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Department of Chemistry, Université de Montréal, Roger-Gaudry Building, Montreal, Quebec H3C 3J7, Canada
| | - Khoa H. Ly
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Fakultät für Chemie und Lebensmittelchemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - William E. Robinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Nina Heidary
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Department of Chemistry, Université de Montréal, Roger-Gaudry Building, Montreal, Quebec H3C 3J7, Canada
| | - Jenny Z. Zhang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
21
|
Zhou Y, Wang D, Li C, Hu P, Jin Y. Resistive-Pulse Sensing and Surface Charge Analysis of a Single Nanoparticle Collision at a Conical Glass Nanopore. Anal Chem 2019; 91:7648-7653. [DOI: 10.1021/acs.analchem.9b00553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ya Zhou
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dandan Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuanping Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Hu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yongdong Jin
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
22
|
Xu M, Zhang Y, Wang K, Mao J, Ji W, Qiu W, Feng T, Zhang M, Mao L. Nanoskiving fabrication of size-controlled Au nanowire electrodes for electroanalysis. Analyst 2019; 144:2914-2921. [PMID: 30912775 DOI: 10.1039/c9an00122k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoskiving, benefiting from its simple operation and high reproducibility, is a promising method to fabricate nanometer-size electrodes. In this work, we report the fabrication of Au nanowire electrodes with different shapes and well-controlled sizes through nanoskiving. Au nanowire block electrodes, membrane electrodes and tip electrodes are prepared with good reproducibility. Steady-state cyclic voltammograms (CVs) demonstrate that all these electrodes behave well as nanoband ultramicroelectrodes. A fast heterogeneous electron transfer rate constant can be extracted reliably from steady-state CVs at various size Au nanowire block electrodes by the Koutecký-Levich (K-L) method. The Au nanowire membrane electrodes demonstrate good sensitivity toward the oxidation of catecholamine and could monitor catecholamine released from rat adrenal chromaffin cells stimulated by high K+.
Collapse
Affiliation(s)
- Muzhen Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Yue Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Kai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinpeng Mao
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Wenliang Ji
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Wanling Qiu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Taotao Feng
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
23
|
Zhang Y, Mao J, Ji W, Feng T, Fu Z, Zhang M, Mao L. Collision of Aptamer/Pt Nanoparticles Enables Label-Free Amperometric Detection of Protein in Rat Brain. Anal Chem 2019; 91:5654-5659. [PMID: 30888153 DOI: 10.1021/acs.analchem.8b05457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Single particle collision is emerging as a powerful and sensitive technique for analyzing small molecules, however, its application in biomacromolecules detection, for example, protein, in complex biological environments is still challenging. Here, we present the first demonstration on the single particle collision that can be developed for the detection of platelet-derived growth factor (PDGF), an important protein involved in the central nervous system in living rat brain. The system features Pt nanoparticles (PtNPs) conjugated with the PDGF recognition aptamer, suppressing the electrocatalytic collision of PtNPs toward the oxidation of hydrazine. In the presence of PDGF, the stronger binding between targeted protein and the aptamer disrupts the aptamer/PtNPs conjugates, recovering the electrocatalytic performance of PtNPs, and allowing quantitative, selective, and highly sensitive detection of PDGF in cerebrospinal fluid of rat brain.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Jinpeng Mao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Wenliang Ji
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Taotao Feng
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Zixuan Fu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Meining Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry , The Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
24
|
Hafez ME, Ma H, Ma W, Long YT. Unveiling the Intrinsic Catalytic Activities of Single-Gold-Nanoparticle-Based Enzyme Mimetics. Angew Chem Int Ed Engl 2019; 58:6327-6332. [PMID: 30854788 DOI: 10.1002/anie.201901384] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/23/2019] [Indexed: 01/20/2023]
Abstract
Gold nanoparticles (AuNPs) have been demonstrated to serve as effective nanomaterial-based enzyme mimetics (nanozymes) for a number of enzymatic reactions under mild conditions. The intrinsic glucose oxidase and peroxidase activities of single AuNPs and Ag-Au nanohybrids, respectively, were investigated by single NP collision electrochemical measurements. A significantly high turnover number of nanozymes was obtained from individual catalytic events compared with the results from the classical, ensemble-averaged measurements. The unusual enhancement of catalytic activity of single nanozymes is believed to originate from the high accessible surface area of monodispersed NPs and the high activities of carbon-supported NPs during single-particle collision at a carbon ultramicroelectrode. This work introduces a new method for the precise characterization of the intrinsic catalytic activities of nanozymes, giving further insights to the design of high-efficiency nanomaterial catalysts.
Collapse
Affiliation(s)
- Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hui Ma
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Wei Ma
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
25
|
Hafez ME, Ma H, Ma W, Long Y. Unveiling the Intrinsic Catalytic Activities of Single‐Gold‐Nanoparticle‐Based Enzyme Mimetics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901384] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mahmoud Elsayed Hafez
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Hui Ma
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Wei Ma
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
26
|
Zhang Y, Feng T, Xu M, Tang Q, Zhang M. Observing Single Hollow Porous Carbon Catalyst Collisions for Oxygen Reduction at Gold Nanoband Electrode. Chemphyschem 2019; 20:529-532. [PMID: 30635976 DOI: 10.1002/cphc.201801028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/19/2018] [Indexed: 01/13/2023]
Abstract
The evaluation of single carbon particle catalysts is critical to better understand the relationship between structure and properties. Here, we use an electrochemical collision method to study the electrocatalytic behaviour of single hollow porous carbon catalyst on gold nanoband electrodes (AuNBE). We observed the catalytic current of oxygen reduction of single carbon particle and quantified the contribution of the porous structure to the catalytic performance. We find that the meso/microporous and hollow structures contribute to the electrocatalytic current. Our research provides direct evidence that the hollow/porous structures improve the electrocatalytic performance.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Taotao Feng
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Muzhen Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Qiao Tang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
27
|
Chan C, Kätelhön E, Compton RG. Theoretical prediction of a transient accumulation of nanoparticles at a well-defined distance from an electrified liquid-solid interface. NANOSCALE 2018; 10:19459-19468. [PMID: 30318525 DOI: 10.1039/c8nr05055d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Brownian motion of nanoparticles near liquid-solid interfaces is at the heart of evolving technologies: recent developments in the sensing of nano-objects and energy storages based on electro-active colloidal solutions crucially rely on the understanding and, even more, on the control of particle transport near charged surfaces. On the basis of the Nernst-Planck equation, the Gouy-Chapman model, and an established model of near-wall hindered diffusion, this work predicts transient and highly-localised accumulations of nanoparticles at a well-defined distance from an electrified surface following a potential being applied. The interplay of electrostatics and near-wall hindered diffusion yields entirely unexpected effects: nanoobjects temporarily accumulate near the interface while even small electric potentials applied at the surface can dramatically enhance the mass transport of nano-objects towards it.
Collapse
Affiliation(s)
- Crystal Chan
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | | | | |
Collapse
|
28
|
Affiliation(s)
- Lane A. Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
29
|
Lin C, Sepunaru L, Kätelhön E, Compton RG. Electrochemistry of Single Enzymes: Fluctuations of Catalase Activities. J Phys Chem Lett 2018; 9:2814-2817. [PMID: 29750524 DOI: 10.1021/acs.jpclett.8b01199] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dynamic fluctuations of the catalytic ability of single catalase enzymes toward hydrogen peroxide decomposition are observed via the nanoimpact technique. The electrochemical signals of single enzymes show that the catalytic ability of single enzymes can temporarily be much higher than expected from the classical, time-averaged Michaelis-Menten description. By combination of experimental data with a new theoretical model, we interpret the unusual enhancement of the single catalase signal and find that single catalases show large fluctuations of the catalytic ability.
Collapse
Affiliation(s)
- Chuhong Lin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory , Oxford University , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Lior Sepunaru
- Department of Chemistry & Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Enno Kätelhön
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory , Oxford University , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory , Oxford University , South Parks Road , Oxford OX1 3QZ , United Kingdom
| |
Collapse
|