1
|
Reidell A, Pazder KE, LeBarron CT, Stewart SA, Hosseini S. Modified Working Electrodes for Organic Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:579-603. [PMID: 39649987 PMCID: PMC11621959 DOI: 10.1021/acsorginorgau.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 12/11/2024]
Abstract
Organic electrosynthesis has gained much attention over the last few decades as a promising alternative to traditional synthesis methods. Electrochemical approaches offer numerous advantages over traditional organic synthesis procedures. One of the most interesting aspects of electroorganic synthesis is the ability to tune many parameters to affect the outcome of the reaction of interest. One such parameter is the composition of the working electrode. By changing the electrode material, one can influence the selectivity, product distribution, and rate of organic reactions. In this Review, we describe several electrode materials and modifications with applications in organic electrosynthetic transformations. Included in this discussion are modifications of electrodes with nanoparticles, composite materials, polymers, organic frameworks, and surface-bound mediators. We first discuss the important physicochemical and electrochemical properties of each material. Then, we briefly summarize several relevant examples of each class of electrodes, with the goal of providing readers with a catalog of electrode materials for a wide variety of organic syntheses.
Collapse
Affiliation(s)
- Alexander
C. Reidell
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Kristen E. Pazder
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Christopher T. LeBarron
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Skylar A. Stewart
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Seyyedamirhossein Hosseini
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
2
|
Hatch CE, Chain WJ. Electrochemically Enabled Total Syntheses of Natural Products. ChemElectroChem 2023; 10:e202300140. [PMID: 38106361 PMCID: PMC10723087 DOI: 10.1002/celc.202300140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 12/19/2023]
Abstract
Electrochemical techniques have helped to enable the total synthesis of natural products since the pioneering work of Kolbe in the mid 1800's. The electrochemical toolset grows every day and these new possibilities change the way chemists look at and think about natural products. This review provides a perspective on total syntheses wherein electrochemical techniques enabled the carbon─carbon bond formations in the skeletal assembly of important natural products, discussion of mechanistic details, and representative examples of the bond formations enabled over the last several decades. These bond formations are often distinctly different from those possible with conventional chemistries and allow assemblies complementary to other techniques.
Collapse
Affiliation(s)
- Chad E Hatch
- Chemical Biology, Memorial Sloan Kettering Cancer Center, 417 E. 68 St., New York, NY, 10065 (United States)
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716 (United States)
| |
Collapse
|
3
|
Abdollahi MF, Zhao Y. Donor-Acceptor Fluorophores and Macrocycles Built Upon Wedge-Shaped π-Extended Phenanthroimidazoles. J Org Chem 2023; 88:3451-3465. [PMID: 36862080 DOI: 10.1021/acs.joc.2c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A class of wedge-shaped organic π-fluorophores featuring a 6,9-diphenyl-substituted phenanthroimidazole (PI) core was designed, synthesized, and characterized. Among them, a π-extended PI derivative containing two electron-withdrawing aldehyde groups was found to exhibit versatile solid-state packing properties as well as strong solvatofluorochromism in different organic solvents. Another PI derivative that was functionalized with two electron-donating 1,4-dithiafulvenyl (DTF) end groups showed versatile redox reactivities and quenched fluorescence. Treatment of this wedge-shaped bis(DTF)-PI compound with iodine resulted in oxidative coupling reactions, leading to the formation of intriguing macrocyclic products that carry redox-active tetrathiafulvalene vinylogue (TTFV) moieties in their structures. Mixing the bis(DTF)-PI derivative with fullerene (C60 or C70) in an organic solvent resulted in substantial fluorescence enhancement (turn-on). In this process, fullerene acted as a photosensitizer to generate singlet oxygen, which in turn induced oxidative C = C bond cleavages and converted nonfluorescent bis(DTF)-PI into highly fluorescent dialdehyde-substituted PI. Treatment of TTFV-PI macrocycles with a small amount of fullerene also led to a moderate degree of fluorescence enhancement, but this is not because of photosensitized oxidative cleavage reactions. Instead, competitive photoinduced electron transfer from TTFV to fullerene can be attributed to their fluorescence turn-on behavior.
Collapse
Affiliation(s)
- Maryam F Abdollahi
- Department of Chemistry, Memorial University, Core Science Facility, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Yuming Zhao
- Department of Chemistry, Memorial University, Core Science Facility, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
4
|
Prudlik A, Mohebbati N, Hildebrandt L, Heck A, Nuhn L, Francke R. TEMPO-Modified Polymethacrylates as Mediators in Electrosynthesis: Influence of the Molecular Weight on Redox Properties and Electrocatalytic Activity. Chemistry 2023; 29:e202202730. [PMID: 36426862 DOI: 10.1002/chem.202202730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Homogeneous catalysts ("mediators") are frequently employed in organic electrosynthesis to control selectivity. Despite their advantages, they can have a negative influence on the overall energy and mass balance if used only once or recycled inefficiently. Polymediators are soluble redox-active polymers applicable as electrocatalysts, enabling recovery by dialysis or membrane filtration. Using anodic alcohol oxidation as an example, we have demonstrated that TEMPO-modified polymethacrylates (TPMA) can act as efficient and recyclable catalysts. In the present work, the influence of the molecular size on the redox properties and the catalytic activity was carefully elaborated using a series of TPMAs with well-defined molecular weight distributions. Cyclic voltammetry studies show that the polymer chain length has a pronounced impact on the key-properties. Together with preparative-scale electrolysis experiments, an optimum size range was identified for polymediator-guided sustainable reaction control.
Collapse
Affiliation(s)
- Adrian Prudlik
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Nayereh Mohebbati
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Laura Hildebrandt
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Alina Heck
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Chair of Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Chair of Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Robert Francke
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| |
Collapse
|
5
|
Ainsworth J, Cook TC, Stack TDP. Fast and Versatile Functionalization of Glassy Carbon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13814-13821. [PMID: 36326209 DOI: 10.1021/acs.langmuir.2c01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A rapid procedure for the functionalization of glassy carbon surfaces (GCSs) is disclosed. A three-step sequence of bromomethylation, azide displacement, and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) allows ethynylated molecules to be attached covalently to the carbon surface through a methylene functional group. Redox-active ethynyl ferrocene and [RuII(Cl)(DMSO)(ethynyl-TPA)]1+ (DMSO = dimethylsulfoxide; TPA = tris(2-pyridylmethyl)amine) are attached with high coverages as assessed by cyclic voltammetry, and the elemental composition of the surface is confirmed by X-ray photoelectron spectroscopy. In less than 1 h, surface coverages of 1 × 1014 molecules/cm2 are possible that exhibit good durability in both acidic and basic media. Attached [RuII(Cl)(DMSO)(ethynyl-TPA)]1+ catalytically oxidizes alcohols, yet the currents and potentials are less impressive compared to an attachment without the intervening methylene group. The advantages of this covalent attachment procedure for GCSs are its short reaction times, mild reaction conditions, and the use of standard laboratory reagents and glassware, allowing for many types of ethynylated molecules to be attached rapidly to the surface.
Collapse
Affiliation(s)
- Jasper Ainsworth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thomas C Cook
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - T Daniel P Stack
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Enders P, Májek M, Lam CM, Little D, Francke R. How to Harness Electrochemical Mediators for Photocatalysis – A Systematic Approach Using the Phenanthro[9,10‐d]imidazole Framework as a Test Case. ChemCatChem 2022. [DOI: 10.1002/cctc.202200830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick Enders
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Electrochemistry & Catalysis GERMANY
| | - Michal Májek
- Comenius University in Bratislava: Univerzita Komenskeho v Bratislave Institute of Chemistry SLOVAKIA
| | - Chiu Marco Lam
- University of California Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Daniel Little
- University of California Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Robert Francke
- Rostock University Institute of Chemistry Albert-Einstein-Str. 3a 18059 Rostock GERMANY
| |
Collapse
|
7
|
Kanagavalli P, Pandey GR, Murugan P, Veerapandian M. Electrochemical and DFT studies of andrographolide on electrochemically reduced graphene oxide for anti-viral herbaceutical sensor. Anal Chim Acta 2022; 1209:339877. [DOI: 10.1016/j.aca.2022.339877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/15/2022]
|
8
|
Electrocatalytic alcohol oxidation by covalently immobilized ruthenium complex on carbon. J Inorg Biochem 2022; 231:111784. [DOI: 10.1016/j.jinorgbio.2022.111784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/23/2022]
|
9
|
Ashikari Y, Tamaki T, Takahashi Y, Yao Y, Atobe M, Nagaki A. Investigation of Parameter Control for Electrocatalytic Semihydrogenation in a Proton-Exchange Membrane Reactor Utilizing Bayesian Optimization. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.819752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Owing to its applicability in sustainable engineering, flow electrochemical synthesis in a proton-exchange membrane (PEM) reactor has attracted considerable attention. Because the reactions in PEM reactors are performed under electro-organic and flow-synthetic conditions, a higher number of reaction parameters exist compared to ordinary reactions. Thus, the optimization of such reactions requires significant amounts of energy, time, chemical and human resources. Herein, we show that the optimization of alkyne semihydrogenation in PEM reactors can be facilitated by means of Bayesian optimization, an applied mathematics strategy. Applying the optimized conditions, we also demonstrate the generation of a deuterated Z-alkene.
Collapse
|
10
|
Mohebbati N, Prudlik A, Scherkus A, Gudkova A, Francke R. TEMPO‐Modified Polymethacrylates as Mediators in Electrosynthesis – Redox Behavior and Electrocatalytic Activity toward Alcohol Substrates. ChemElectroChem 2021. [DOI: 10.1002/celc.202100768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nayereh Mohebbati
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Adrian Prudlik
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Anton Scherkus
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Aija Gudkova
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Robert Francke
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| |
Collapse
|
11
|
Cembellín S, Batanero B. Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. CHEM REC 2021; 21:2453-2471. [PMID: 33955158 DOI: 10.1002/tcr.202100128] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The adoption of new measures that preserve our environment, on which our survival depends, is a necessity. Electro-organic processes are sustainable per se, by producing the activation of a substrate by electron transfer at normal pressure and room temperature. In the recent years, a highly crescent number of works on organic electrosynthesis are available. Novel strategies at the electrode are being developed enabling the construction of a great variety of complex organic molecules. However, the possibility of being scaled-up is mandatory in terms of sustainability. Thus, some electrochemical methodologies have demonstrated to report the best results in reducing pollution and saving energy. In this personal account, these methods have been compiled, being organized as follows: • Direct discharge electrosynthesis • Paired electrochemical reactions. and • Organic transformations utilizing electrocatalysis (in absence of heavy metals). Selected protocols are herein presented and discussed with representative recent examples. Final perspectives and reflections are also considered.
Collapse
Affiliation(s)
- Sara Cembellín
- University of Alcala, Organic and Inorganic Chemistry Department (Organic area), Campus, km 33,6 A2, 28805, Alcalá de Henares, Madrid, Spain
| | - Belén Batanero
- University of Alcala, Organic and Inorganic Chemistry Department (Organic area), Campus, km 33,6 A2, 28805, Alcalá de Henares, Madrid, Spain.,Instituto de Investigación Química, "Andrés M. del Río" (IQAR) University of Alcala
| |
Collapse
|
12
|
Jang JH, Ahn S, Park SE, Kim S, Byon HR, Joo JM. Synthesis of Redox-Active Phenanthrene-Fused Heteroarenes by Palladium-Catalyzed C-H Annulation. Org Lett 2020; 22:1280-1285. [PMID: 32027138 DOI: 10.1021/acs.orglett.9b04545] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd-catalyzed C-H annulation reactions of halo- and aryl-heteroarenes were developed using readily available o-bromobiaryls and o-dibromoaryls, respectively. A variety of five-membered heteroarenes rapidly provided the corresponding phenanthrene-fused heteroarenes, which led to the identification of phenanthro-pyrazole and thiazole as new, stable -2 V redox couples. The flexible syntheses and tunability of the redox potentials of these azole-fused phenanthrenes over a wide range are expected to facilitate their application as redox-active organic functional materials.
Collapse
Affiliation(s)
- Jin Hyeok Jang
- Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Busan 46241 , Republic of Korea
| | - Seongmo Ahn
- Department of Chemistry at Korea Advanced Institute of Science and Technology (KAIST) and Advanced Battery Center at KAIST Institute for NanoCentury , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Soo Eun Park
- Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Busan 46241 , Republic of Korea
| | - Soeun Kim
- Department of Chemistry at Korea Advanced Institute of Science and Technology (KAIST) and Advanced Battery Center at KAIST Institute for NanoCentury , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Hye Ryung Byon
- Department of Chemistry at Korea Advanced Institute of Science and Technology (KAIST) and Advanced Battery Center at KAIST Institute for NanoCentury , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Busan 46241 , Republic of Korea
| |
Collapse
|
13
|
Chang X, Zhang Q, Guo C. Electrochemical Reductive Smiles Rearrangement for C–N Bond Formation. Org Lett 2018; 21:10-13. [DOI: 10.1021/acs.orglett.8b03178] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xihao Chang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qinglin Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Hou ZW, Mao ZY, Melcamu YY, Lu X, Xu HC. Electrochemical Synthesis of Imidazo-Fused N-Heteroaromatic Compounds through a C−N Bond-Forming Radical Cascade. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711876] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhong-Wei Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Zhong-Yi Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Yared Yohannes Melcamu
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| |
Collapse
|
15
|
Hou ZW, Mao ZY, Melcamu YY, Lu X, Xu HC. Electrochemical Synthesis of Imidazo-Fused N-Heteroaromatic Compounds through a C−N Bond-Forming Radical Cascade. Angew Chem Int Ed Engl 2018; 57:1636-1639. [DOI: 10.1002/anie.201711876] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Zhong-Wei Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Zhong-Yi Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Yared Yohannes Melcamu
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces i ChEM, and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| |
Collapse
|