1
|
Stevens JE, Moore CE, Thomas CM. Si-H Bond Activation and Dehydrogenative Coupling of Silanes across the Iron-Amide Bond of a Bis(amido)bis(phosphine) Iron(II) Complex. J Am Chem Soc 2023; 145:794-799. [PMID: 36594789 DOI: 10.1021/jacs.2c12157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite the utility of Si-Si bonds, there are relatively few examples of Si-Si bond formation by base metals. In this work, a four-coordinate iron complex, (PNNP)FeII, is shown to strongly activate the Si-H bonds in primary silanes across the Fe-amide bonds in a metal-ligand cooperative fashion. Upon treatment with excess silane, Si-Si dehydrogenative homocoupling is shown to occur across the Fe-Namide bond without concomitant oxidation and spin state changes at the Fe center.
Collapse
Affiliation(s)
- Jeremiah E Stevens
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Tsui BTH, Sung MMH, Kinas J, Hahn FE, Morris RH. A Ruthenium Protic N-Heterocyclic Carbene Complex as a Precatalyst for the Efficient Transfer Hydrogenation of Aryl Ketones. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brian T. H. Tsui
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Molly M. H. Sung
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jenny Kinas
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster D-48149, Germany
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster D-48149, Germany
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
3
|
Gradiski MV, Rennie BE, Lough AJ, Morris RH. Electronic insights into aminoquinoline-based PN HN ligands: protonation state dictates geometry while coordination environment dictates N-H acidity and bond strength. Dalton Trans 2022; 51:11241-11254. [PMID: 35731231 DOI: 10.1039/d2dt01556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of transition metal complexes bearing aminoquinoline PNHH'-R ligands R = Ph (L1H), Cy (L2H) and their amido analogues are reported for rhodium(I) ([Rh(L1H)(PPh3)]+1 and Rh(L1)(PPh3) 2), cobalt(II) (Co(L2)(Cl) 3), and iron(II) ([Fe(L1H)2]2+5, Fe(L1)26, and [Fe(C5Me5)(L1H)]PF67). The acid-base and redox properties of the amido complexes 2, 6, and their protio parent complexes 1, and 5 permit the determination of the pKa and bond dissociation free energy (BDFE) of their N-H bonds while the ligand scaffold is coordinated to metal centres of square planar and octahedral geometry, respectively. From relative concentrations obtained by the use of 31P{1H} NMR spectroscopy, a pKaTHF value of 14 is calculated for rhodium complex 1, 6.4 for iron complex 5, and 24 for iron complex 7. These data, when combined with elecrochemical potentials obtained via cyclic voltammetry, allow the calculations of BDFE values for the N-H bond of 69 kcal mol-1 for 1, and of 55 kcal mol-1 for 5.
Collapse
Affiliation(s)
- Matthew V Gradiski
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Benjamin E Rennie
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Alan J Lough
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Robert H Morris
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
4
|
Fusi GM, Gazzola S, Piarulli U. Chiral Iron Complexes in Asymmetric Organic Transformations. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Giovanni Maria Fusi
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como, Italy
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como, Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como, Italy
| |
Collapse
|
5
|
|
6
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
7
|
Xue Q, Wu R, Wang D, Zhu M, Zuo W. Effectiveness and Mechanism of the Ene(amido) Group in Activating Iron for the Catalytic Asymmetric Transfer Hydrogenation of Ketones. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingquan Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Rongliang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Di Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
8
|
Agbossou-Niedercorn F, Michon C. Bifunctional homogeneous catalysts based on first row transition metals in asymmetric hydrogenation. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Ghamari Kargar P, Aryanejad S, Bagherzade G. Simple synthesis of the novel Cu‐MOF catalysts for the selective alcohol oxidation and the oxidative cross‐coupling of amines and alcohols. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences University of Birjand Birjand 97175‐615 Iran
| | - Sima Aryanejad
- Department of Chemistry, Faculty of Sciences University of Birjand Birjand 97175‐615 Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences University of Birjand Birjand 97175‐615 Iran
| |
Collapse
|
10
|
Xue Q, Wu R, Wang D, Zhu M, Zuo W. The Stabilization Effect of π‐Backdonation Ligands on the Catalytic Reactivities of Amido‐Ene(amido) Iron Catalysts in the Asymmetric Transfer Hydrogenation of Ketones. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qingquan Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road, Songjiang District 201620 Shanghai P. R. China
| | - Rongliang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road, Songjiang District 201620 Shanghai P. R. China
| | - Di Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road, Songjiang District 201620 Shanghai P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road, Songjiang District 201620 Shanghai P. R. China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road, Songjiang District 201620 Shanghai P. R. China
| |
Collapse
|
11
|
Gradiski MV, Kharat AN, Ong MSE, Lough AJ, Smith SAM, Morris RH. A One-Step Preparation of Tetradentate Ligands with Nitrogen and Phosphorus Donors by Reductive Amination and Representative Iron Complexes. Inorg Chem 2020; 59:11041-11053. [PMID: 32687329 DOI: 10.1021/acs.inorgchem.0c01535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The synthesis and use of the first examples of unsymmetrical, mixed phosphine donor tripodal NPP2' ligands N(CH2CH2PR2)2(CH2CH2PPh2) are presented. The ligands are synthesized via a convenient, one pot reductive amination using 2-(diphenylphosphino)ethylamine and various substituted phosphonium dimers in order to introduce mixed phosphine donors substituted with P/P', those being Ph/Cy (2), Ph/iPr (3), Ph/iBu (4), Ph/o-Tol (5), and Ph/p-Tol (6). Additionally, we have developed the first known synthesis of a symmetrical tripodal NP3 ligand N(CH2CH2PiBu2)3 using bench safe ammonium acetate as the lone nitrogen source (7). This new protocol eliminates the use of extremely dangerous nitrogen mustard reagents typically required to synthesize NP3 ligands. Some of these tetradentate ligands and also P2NN' ligands N(CH2-o-C5H4N)(CH2CH2PR2)2 (P2NN'-Cy, R = Cy; P2NN'-Ph, R = Ph) prepared by reductive amination using 2-picolylamine are used in the synthesis and reactions of iron complexes. FeCl2(P2NN'-Cy) (8) undergoes single halide abstraction with NaBPh4 to give the trigonal bipyramidal complex [FeCl(P2NN'-Cy)][BPh4] (9). Upon exposure to CO(g), complex 9 readily coordinates CO giving [FeCl(P2NN'-Cy)(CO)][BPh4] (10), and further treatment with an excess of NaBH4 results in formation of the hydride complex [Fe(H)(P2NN'-Cy)(CO)][BPh4] (11). Our previously reported complex FeCl2(P2NN'-Ph) undergoes double halide abstraction with NaBPh4 in the presence of the coordinating solvent to give [Fe(NCMe)2(P2NN'-Ph)][BPh4]2 (12). Ligand 3 can be coordinated to FeCl2, and upon sequential halide abstraction, treatment with NaBH4, and exposure to an atmosphere of dinitrogen, the dinitrogen hydride complex [Fe(H)(NPP2'-iPr)(N2)][BPh4] (13) is isolated. Our symmetrical NP3 ligand 7 can also be coordinated to FeCl2 and, upon exposure to an atmosphere of CO(g), selectively forms [FeCl(NP3)(CO)][BPh4] (14) after salt metathesis with NaBPh4. Complex 14 can be treated with an excess of NaBH4 to give the hydride complex [Fe(H)(NP3)(CO)][BPh4] (15), which can further be deprotonated/reduced to the Fe(0) complex Fe(NP3)(CO) (16) upon treatment with an excess of KH.
Collapse
Affiliation(s)
- Matthew V Gradiski
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario, Canada, M5S 3H6
| | - Ali Nemati Kharat
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maegan S E Ong
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario, Canada, M5S 3H6
| | - Alan J Lough
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario, Canada, M5S 3H6
| | - Samantha A M Smith
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario, Canada, M5S 3H6
| | - Robert H Morris
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario, Canada, M5S 3H6
| |
Collapse
|
12
|
Huo S, Wang Q, Zuo W. An iron variant of the Noyori hydrogenation catalyst for the asymmetric transfer hydrogenation of ketones. Dalton Trans 2020; 49:7959-7967. [PMID: 32497166 DOI: 10.1039/d0dt01204a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report the design of a new iron catalyst for the asymmetric transfer hydrogenation of ketones. This type of iron catalyst combines the structural characteristics of the Noyori hydrogenation catalyst (an axially chiral 2,2'-bis(phosphino)-1,1'-binaphthyl fragment and the metal-ligand bifunctional motif) and an ene(amido) group that can activate the iron center. After activation by 8 equivalents of potassium tert-butoxide, (SA,RP,SS)-7a and (SA,RP,SS)-7b are active but nonenantioselective catalysts for the transfer hydrogenation of acetophenone and α,β-unsaturated aldehydes at room temperature in isopropanol. A maximum turnover number of 14480 was observed for (SA,RP,SS)-7a in the reduction of acetophenone. The right combination of the stereochemistry of the axially chiral 2,2'-bis(phosphino)-1,1'-binaphthyl group and the carbon-centered chiral amine-imine moiety in (SA,RP,RR)-7b' afforded an enantioselective catalyst for the preparation of chiral alcohols with moderate to good yields and a broad functional group tolerance.
Collapse
Affiliation(s)
- Shangfei Huo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of materials science and engineering, Donghua University, China.
| | | | | |
Collapse
|
13
|
Gumus I, Karataş Y, Gülcan M. Silver nanoparticles stabilized by a metal–organic framework (MIL-101(Cr)) as an efficient catalyst for imine production from the dehydrogenative coupling of alcohols and amines. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00974a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we present silver nanoparticles supported on a metal–organic framework (Ag@MIL-101) as a catalyst for the one-pot tandem synthesis of imines from alcohols and amines.
Collapse
Affiliation(s)
- Ilkay Gumus
- Advanced Technology Applied and Research Center
- Mersin University
- Mersin
- Turkey
- Department of Basic Sciences
| | - Yaşar Karataş
- Department of Chemistry
- Van Yüzüncü Yıl University
- Van
- Turkey
| | - Mehmet Gülcan
- Department of Chemistry
- Van Yüzüncü Yıl University
- Van
- Turkey
| |
Collapse
|
14
|
Pilar Lamata M, Passarelli V, Carmona D. Recent Advances in Iridium-Catalysed Transfer Hydrogenation Reactions. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Hatzis GP, Thomas CM. Metal–ligand cooperativity across two sites of a square planar iron(ii) complex ligated by a tetradentate PNNP ligand. Chem Commun (Camb) 2020; 56:8611-8614. [DOI: 10.1039/d0cc02152k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A square planar (PNNP)FeII complex is shown to readily activate two B–H bonds across the Fe–amide linkages in an overall four-electron process facilitated by metal–ligand cooperativity.
Collapse
Affiliation(s)
- Gillian P. Hatzis
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave, Columbus, OH 43210, USA
| | - Christine M. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Passera A, Mezzetti A. Retracted: The Manganese(I)‐Catalyzed Asymmetric Transfer Hydrogenation of Ketones: Disclosing the Macrocylic Privilege. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Alessandro Passera
- Departement Chemie und Angewandte Biowissenschaften Eidgenössische Technische Hochschule (ETH) Zürich 8093 Zürich Switzerland
| | - Antonio Mezzetti
- Departement Chemie und Angewandte Biowissenschaften Eidgenössische Technische Hochschule (ETH) Zürich 8093 Zürich Switzerland
| |
Collapse
|
17
|
Retracted: The Manganese(I)‐Catalyzed Asymmetric Transfer Hydrogenation of Ketones: Disclosing the Macrocylic Privilege. Angew Chem Int Ed Engl 2019; 59:187-191. [DOI: 10.1002/anie.201912605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/08/2019] [Indexed: 12/22/2022]
|
18
|
Mercadé E, Zangrando E, Clotet A, Claver C, Godard C. Novel Chiral PNNP Ligands with a Pyrrolidine Backbone – Application in the Fe‐Catalyzed Asymmetric Transfer Hydrogenation of Ketones. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elisabet Mercadé
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili Marcel.li Domingo s/n 43007 Tarragona Spain
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Science University of Trieste Via Giorgieri 1 Trieste Italy
| | - Anna Clotet
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili Marcel.li Domingo s/n 43007 Tarragona Spain
| | - Carmen Claver
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili Marcel.li Domingo s/n 43007 Tarragona Spain
- Centre Tecnològic de la Química Marcel.li Domingo s/n 43007 Tarragona Spain
| | - Cyril Godard
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili Marcel.li Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
19
|
Geng L, Jian W, Jing P, Zhang W, Yan W, Bai FQ, Liu G. Crystal phase effect of iron oxides on the aerobic oxidative coupling of alcohols and amines under mild conditions: A combined experimental and theoretical study. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Passera A, Mezzetti A. Mn(I) and Fe(II)/PN(H)P Catalysts for the Hydrogenation of Ketones: A Comparison by Experiment and Calculation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900671] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alessandro Passera
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| | - Antonio Mezzetti
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
21
|
De Luca L, Passera A, Mezzetti A. Asymmetric Transfer Hydrogenation with a Bifunctional Iron(II) Hydride: Experiment Meets Computation. J Am Chem Soc 2019; 141:2545-2556. [DOI: 10.1021/jacs.8b12506] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lorena De Luca
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Alessandro Passera
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Antonio Mezzetti
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
22
|
Gradiski MV, Tsui BTH, Lough AJ, Morris RH. PNN′ & P2NN′ ligands via reductive amination with phosphine aldehydes: synthesis and base-metal coordination chemistry. Dalton Trans 2019; 48:2150-2159. [DOI: 10.1039/c8dt04058c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phosphorus-donor “arms” are readily added to amines in order to enable sturdy base metal coordination.
Collapse
Affiliation(s)
| | | | - Alan J. Lough
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | | |
Collapse
|
23
|
Alig L, Fritz M, Schneider S. First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chem Rev 2018; 119:2681-2751. [PMID: 30596420 DOI: 10.1021/acs.chemrev.8b00555] [Citation(s) in RCA: 510] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of 3d metals in de/hydrogenation catalysis has emerged as a competitive field with respect to "traditional" precious metal catalyzed transformations. The introduction of functional pincer ligands that can store protons and/or electrons as expressed by metal-ligand cooperativity and ligand redox-activity strongly stimulated this development as a conceptual starting point for rational catalyst design. This review aims at providing a comprehensive picture of the utilization of functional pincer ligands in first-row transition metal hydrogenation and dehydrogenation catalysis and related synthetic concepts relying on these such as the hydrogen borrowing methodology. Particular emphasis is put on the implementation and relevance of cooperating and redox-active pincer ligands within the mechanistic scenarios.
Collapse
Affiliation(s)
- Lukas Alig
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Maximilian Fritz
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Sven Schneider
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| |
Collapse
|
24
|
Affiliation(s)
- Duo Wei
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
25
|
Demmans KZ, Olson ME, Morris RH. Asymmetric Transfer Hydrogenation of Ketones with Well-Defined Manganese(I) PNN and PNNP Complexes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00625] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Karl Z. Demmans
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Maxwell E. Olson
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
26
|
Huber R, Passera A, Gubler E, Mezzetti A. P-Stereogenic PN(H)P Iron(II) Catalysts for the Asymmetric Hydrogenation of Ketones: The Importance of Non-Covalent Interactions in Rational Ligand Design by Computation. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800433] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Raffael Huber
- Dept. of Chemistry and Applied Biosciences; ETH Zürich; Switzerland
| | | | - Erik Gubler
- Dept. of Chemistry and Applied Biosciences; ETH Zürich; Switzerland
| | - Antonio Mezzetti
- Dept. of Chemistry and Applied Biosciences; ETH Zürich; Switzerland
| |
Collapse
|
27
|
Chang MC, McNeece AJ, Hill EA, Filatov AS, Anderson JS. Ligand-Based Storage of Protons and Electrons in Dihydrazonopyrrole Complexes of Nickel. Chemistry 2018; 24:8001-8008. [PMID: 29572998 DOI: 10.1002/chem.201800658] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Indexed: 12/24/2022]
Abstract
A newly developed dihydrazonopyrrole ligand and corresponding Ni complexes have been synthesized and thoroughly characterized. Electrochemical studies and chemical reactivity tests show that these complexes can reversibly store both electrons and protons, or equivalently H-atoms, via ligand-based events. The stored H-atom equivalent can be transferred to small molecules such as acetonitrile or oxygen. Furthermore, this series of complexes can adopt a variety of different coordination modes. In addition to one e- reactivity, the two e- electrophilic oxidation of phosphines is also demonstrated. Taken together, these results show that dihydrazonopyrrole complexes represent a geometrically and electronically flexible scaffold for controlling the flow of both electrons and protons.
Collapse
Affiliation(s)
- Mu-Chieh Chang
- Department of Chemistry, The University of Chicago, Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Andrew J McNeece
- Department of Chemistry, The University of Chicago, Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Ethan A Hill
- Department of Chemistry, The University of Chicago, Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Alexander S Filatov
- Department of Chemistry, The University of Chicago, Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| |
Collapse
|
28
|
Matsunami A, Kayaki Y. Upgrading and expanding the scope of homogeneous transfer hydrogenation. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|