1
|
Li J, Zhao C, Li C, Xue B, Wang S, Zhang X, Yang X, Shen Z, Bo L, He X, Qiu Z, Wang J. Multidrug-resistant plasmid RP4 increases NO and N 2O yields via the electron transport system in Nitrosomonas europaea ammonia oxidation. WATER RESEARCH 2023; 242:120266. [PMID: 37421866 DOI: 10.1016/j.watres.2023.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Antibiotic resistance genes (ARGs) have recently become an important public health problem and therefore several studies have characterized ARG composition and distribution. However, few studies have assessed their impact on important functional microorganisms in the environment. Therefore, our study sought to investigate the mechanisms through which multidrug-resistant plasmid RP4 affected the ammonia oxidation capacity of ammonia-oxidizing bacteria, which play a key role in the nitrogen cycle. The ammonia oxidation capacity of N. europaea ATCC25978 (RP4) was significantly inhibited, and NO and N2O were produced instead of nitrite. Our findings demonstrated that the decrease in electrons from NH2OH decreased the ammonia monooxygenase (AMO) activity, leading to a decrease in ammonia consumption. In the ammonia oxidation process, N. europaea ATCC25978 (RP4) exhibited ATP and NADH accumulation. The corresponding mechanism was the overactivation of Complex Ⅰ, ATPase, and the TCA cycle by the RP4 plasmid. The genes encoding TCA cycle enzymes related to energy generation, including gltA, icd, sucD, and NE0773, were upregulated in N. europaea ATCC25978 (RP4). These results demonstrate the ecological risks of ARGs, including the inhibition of the ammonia oxidation process and an increased production of greenhouse gases such as NO and N2O.
Collapse
Affiliation(s)
- Jia Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xi Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lin Bo
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Tiangong University, Tianjin, China
| | - Xinxin He
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
2
|
Bollmeyer MM, Majer SH, Coleman RE, Lancaster KM. Outer coordination sphere influences on cofactor maturation and substrate oxidation by cytochrome P460. Chem Sci 2023; 14:8295-8304. [PMID: 37564409 PMCID: PMC10411619 DOI: 10.1039/d3sc02288a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 08/12/2023] Open
Abstract
Product selectivity of ammonia oxidation by ammonia-oxidizing bacteria (AOB) is tightly controlled by metalloenzymes. Hydroxylamine oxidoreductase (HAO) is responsible for the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO). The non-metabolic enzyme cytochrome (cyt) P460 also oxidizes NH2OH, but instead produces nitrous oxide (N2O). While both enzymes use a heme P460 cofactor, they selectively oxidize NH2OH to different products. Previously reported structures of Nitrosomonas sp. AL212 cyt P460 show that a capping phenylalanine residue rotates upon ligand binding, suggesting that this Phe may influence substrate and/or product binding. Here, we show via substitutions of the capping Phe in Nitrosomonas europaea cyt P460 that the bulky phenyl side-chain promotes the heme-lysine cross-link forming reaction operative in maturing the cofactor. Additionally, the Phe side-chain plays an important role in modulating product selectivity between N2O and NO during NH2OH oxidation under aerobic conditions. A picture emerges where the sterics and electrostatics of the side-chain in this capping position control the kinetics of N2O formation and NO binding affinity. This demonstrates how the outer coordination sphere of cyt P460 is tuned not only for selective NH2OH oxidation, but also for the autocatalytic cross-link forming reaction that imbues activity to an otherwise inactive protein.
Collapse
Affiliation(s)
- Melissa M Bollmeyer
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| | - Sean H Majer
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| | - Rachael E Coleman
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| | - Kyle M Lancaster
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| |
Collapse
|
3
|
Bollmeyer MM, Coleman RE, Majer SH, Ferrao SD, Lancaster KM. Cytochrome P460 Cofactor Maturation Proceeds via Peroxide-Dependent Post-translational Modification. J Am Chem Soc 2023; 145:14404-14416. [PMID: 37338957 PMCID: PMC10431212 DOI: 10.1021/jacs.3c03608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Cytochrome P460s are heme enzymes that oxidize hydroxylamine to nitrous oxide. They bear specialized "heme P460" cofactors that are cross-linked to their host polypeptides by a post-translationally modified lysine residue. Wild-type N. europaea cytochrome P460 may be isolated as a cross-link-deficient proenzyme following anaerobic overexpression in E. coli. When treated with peroxide, this proenzyme undergoes maturation to active enzyme with spectroscopic and catalytic properties that match wild-type cyt P460. This maturation reactivity requires no chaperones─it is intrinsic to the protein. This behavior extends to the broader cytochrome c'β superfamily. Accumulated data reveal key contributions from the secondary coordination sphere that enable selective, complete maturation. Spectroscopic data support the intermediacy of a ferryl species along the maturation pathway.
Collapse
Affiliation(s)
- Melissa M. Bollmeyer
- Department of Chemistry and Chemical Biology Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, NY 14853, USA
| | - Rachael E. Coleman
- Department of Chemistry and Chemical Biology Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, NY 14853, USA
| | - Sean H. Majer
- Department of Chemistry and Chemical Biology Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, NY 14853, USA
| | - Silas D. Ferrao
- Department of Chemistry and Chemical Biology Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, NY 14853, USA
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Young MN, Boltz J, Rittmann BE, Al-Omari A, Jimenez JA, Takacs I, Marcus AK. Thermodynamic Analysis of Intermediary Metabolic Steps and Nitrous Oxide Production by Ammonium-Oxidizing Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12532-12541. [PMID: 35993695 DOI: 10.1021/acs.est.1c08498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) is a greenhouse gas emitted from wastewater treatment, soils, and agriculture largely by ammonium-oxidizing bacteria (AOB). While AOB are characterized by being aerobes that oxidize ammonium (NH4+) to nitrite (NO2-), fundamental studies in microbiology are revealing the importance of metabolic intermediates and reactions that can lead to the production of N2O. These findings about the metabolic pathways for AOB were integrated with thermodynamic electron-equivalents modeling (TEEM) to estimate kinetic and stoichiometric parameters for each of the AOB's nitrogen (N)-oxidation and -reduction reactions. The TEEM analysis shows that hydroxylamine (NH2OH) oxidation to nitroxyl (HNO) is the most energetically efficient means for the AOB to provide electrons for ammonium monooxygenation, while oxidations of HNO to nitric oxide (NO) and NO to NO2- are energetically favorable for respiration and biomass synthesis. The respiratory electron acceptor can be O2 or NO, and both have similar energetics. The TEEM-predicted value for biomass yield, maximum-specific rate of NH4+ utilization, and maximum specific growth rate are consistent with empirical observations. NO reduction to N2O is thermodynamically favorable for respiration and biomass synthesis, but the need for O2 as a reactant in ammonium monooxygenation likely precludes NO reduction to N2O from becoming the major pathway for respiration.
Collapse
Affiliation(s)
- Michelle N Young
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | - Joshua Boltz
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | - Ahmed Al-Omari
- Brown and Caldwell, 1725 Duke Street Suite 250, Alexandria, Virginia 22314, United States
| | - Jose A Jimenez
- Brown and Caldwell, 351 Lucien Way, Suite 250, Maitland, Florida 32751, United States
| | - Imre Takacs
- Dynamita, 2015 route d'Aiglun, 06910 Sigale, France
| | - Andrew K Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
5
|
Abendroth J, Buchko GW, Liew FN, Nguyen JN, Kim HJ. Structural Characterization of Cytochrome c'β-Met from an Ammonia-Oxidizing Bacterium. Biochemistry 2022; 61:563-574. [PMID: 35315646 DOI: 10.1021/acs.biochem.1c00640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ammonia-oxidizing bacterium Nitrosomonas europaea expresses two cytochromes in the P460 superfamily that are predicted to be structurally similar. In one, cytochrome (cyt) P460, the substrate hydroxylamine (NH2OH) is converted to nitric oxide (NO) and nitrous oxide (N2O) requiring a unique heme-lysyl cross-link in the catalytic cofactor. In the second, cyt c'β-Met, the cross-link is absent, and the cytochrome instead binds H2O2 forming a ferryl species similar to compound II of peroxidases. Here, we report the 1.80 Å crystal structure of cyt c'β-Met─a well-expressed protein in N. europaea with a lysine to a methionine replacement at the cross-linking position. The structure of cyt c'β-Met is characterized by a large β-sheet typical of P460 members; however, several localized structural differences render cyt c'β-Met distinct. This includes a large lasso-like loop at the "top" of the cytochrome that is not observed in other structurally characterized members. Active site variation is also observed, especially in comparison to its closest homologue cyt c'β from the methane-oxidizing Methylococcus capsulatus Bath, which also lacks the cross-link. The phenylalanine "cap" which is presumed to control small ligand access to the distal heme iron is replaced with an arginine, reminiscent of the strictly conserved distal arginine in peroxidases and to the NH2OH-oxidizing cytochromes P460. A critical proton-transferring glutamate residue required for NH2OH oxidation is nevertheless missing in the active site. This in part explains the inability of cyt c'β-Met to oxidize NH2OH. Our structure also rationalizes the absence of a methionyl cross-link, although the side chain's spatial position in the structure does not eliminate the possibility that it could form under certain conditions.
Collapse
Affiliation(s)
- Jan Abendroth
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington 98105, United States.,UCB Biosciences, Bainbridge Island, Washington 98110, United States
| | - Garry W Buchko
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington 98105, United States.,Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 98354, United States.,School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, United States
| | - Fong Ning Liew
- Division of Physical Sciences, Chemistry, University of Washington-Bothell, Bothell, Washington 98011, United States
| | - Joline N Nguyen
- Division of Physical Sciences, Chemistry, University of Washington-Bothell, Bothell, Washington 98011, United States
| | - Hyung J Kim
- Division of Physical Sciences, Chemistry, University of Washington-Bothell, Bothell, Washington 98011, United States
| |
Collapse
|
6
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
7
|
Chen L, Deng Z, Zhao C. Nitrogen-Nitrogen Bond Formation Reactions Involved in Natural Product Biosynthesis. ACS Chem Biol 2021; 16:559-570. [PMID: 33721494 DOI: 10.1021/acschembio.1c00052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Construction of nitrogen-nitrogen bonds involves sophisticated biosynthetic mechanisms to overcome the difficulties inherent to the nucleophilic nitrogen atom of amine. Over the past decade, a multitude of reactions responsible for nitrogen-nitrogen bond formation in natural product biosynthesis have been uncovered. On the basis of the intrinsic properties of these reactions, this Review classifies these reactions into three categories: comproportionation, rearrangement, and radical recombination reactions. To expound the metallobiochemistry underlying nitrogen-nitrogen bond formation reactions, we discuss the enzymatic mechanisms in comparison to well characterized canonical heme-dependent enzymes, mononuclear nonheme iron-dependent enzymes, and nonheme di-iron enzymes. We also illuminate the intermediary properties of nitrogen oxide species NO2-, NO+, and N2O3 in nitrogen-nitrogen bond formation reactions with clues derived from inorganic nitrogen metabolism driven by anammox bacteria and nitrifying bacteria. These multidimentional discussions will provide further insights into the mechanistic proposals of nitrogen-nitrogen bond formation in natural product biosynthesis.
Collapse
Affiliation(s)
- Linyue Chen
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Changming Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| |
Collapse
|
8
|
Abstract
Ammonia-oxidizing bacteria (AOB) convert ammonia (NH3) to nitrite (NO2-) as their primary metabolism and thus provide a blueprint for the use of NH3 as a chemical fuel. The first energy-producing step involves the homotrimeric enzyme hydroxylamine oxidoreductase (HAO), which was originally reported to oxidize hydroxylamine (NH2OH) to NO2-. HAO uses the heme P460 cofactor as the site of catalysis. This heme is supported by seven other c hemes in each monomer that mediate electron transfer. Heme P460 cofactors are c-heme-based cofactors that have atypical protein cross-links between the peptide backbone and the porphyrin macrocycle. This cofactor has been observed in both the HAO and cytochrome (cyt) P460 protein families. However, there are differences; specifically, HAO uses a single tyrosine residue to form two covalent attachments to the macrocycle whereas cyt P460 uses a lysine residue to form one. In Nitrosomonas europaea, which expresses both HAO and cyt P460, these enzymes achieve the oxidation of NH2OH and were both originally reported to produce NO2-. Each can inspire means to effect controlled release of chemical energy.Spectroscopically studying the P460 cofactors of HAO is complicated by the 21 non-P460 heme cofactors, which obscure the active site. However, monoheme cyt P460 is more approachable biochemically and spectroscopically. Thus, we have used cyt P460 to study biological NH2OH oxidation. Under aerobic conditions substoichiometric production of NO2- was observed along with production of nitrous oxide (N2O). Under anaerobic conditions, however, N2O was the exclusive product of NH2OH oxidation. We have advanced our understanding of the mechanism of this enzyme and have showed that a key intermediate is a ferric nitrosyl that can dissociate the bound nitric oxide (NO) molecule and react with O2, thus producing NO2- abiotically. Because N2O was the true product of one P460 cofactor-containing enzyme, this prompted us to reinvestigate whether NO2- is enzymatically generated from HAO catalysis. Like cyt P460, we showed that HAO does not produce NO2- enzymatically, but unlike cyt P460, its final product is NO, establishing it as an intermediate of nitrification. More broadly, NO can be recognized as a molecule common to the primary metabolisms of all organisms involved in nitrogen "defixation".Delving deeper into cyt P460 yielded insights broadly applicable to controlled biochemical redox processes. Studies of an inactive cyt P460 from Nitrosomonas sp. AL212 showed that this enzyme was unable to oxidize NH2OH because it lacked a glutamate residue in its secondary coordination sphere that was present in the active N. europaea cyt P460 variant. Restoring the Glu residue imbued activity, revealing that a second-sphere base is Nature's key to controlled oxidation of NH2OH. A key lesson of bioinorganic chemistry is reinforced: the polypeptide matrix is an essential part of dictating function. Our work also exposed some key functional contributions of noncanonical heme-protein cross-links. The heme-Lys cross-link of cyt P460 enforces the relative position of the cofactor and second-sphere residues. Moreover, the cross-link prevents the dissociation of the axial histidine residue, which stops catalysis, emphasizing the importance of this unique post-translational modification.
Collapse
Affiliation(s)
- Rachael E. Coleman
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M. Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Brown BN, Robinson KJ, Durfee QC, Kekilli D, Hough MA, Andrew CR. Hydroxylamine Complexes of Cytochrome c': Influence of Heme Iron Redox State on Kinetic and Spectroscopic Properties. Inorg Chem 2020; 59:14162-14170. [PMID: 32970420 DOI: 10.1021/acs.inorgchem.0c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxylamine (NH2OH or HA) is a redox-active nitrogen oxide that occurs as a toxic intermediate in the oxidation of ammonium by nitrifying and methanotrophic bacteria. Within ammonium containing environments, HA is generated by ammonia monooxygenase (nitrifiers) or methane monooxygenase (methanotrophs). Subsequent oxidation of HA is catalyzed by heme proteins, including cytochromes P460 and multiheme hydroxylamine oxidoreductases, the former contributing to emissions of N2O, an ozone-depleting greenhouse gas. A heme-HA complex is also a proposed intermediate in the reduction of nitrite to ammonia by cytochrome c nitrite reductase. Despite the importance of heme-HA complexes within the biogeochemical nitrogen cycle, fundamental aspects of their coordination chemistry remain unknown, including the effect of the Fe redox state on heme-HA affinity, kinetics, and spectroscopy. Using stopped-flow UV-vis and resonance Raman spectroscopy, we investigated HA complexes of the L16G distal pocket variant of Alcaligenes xylosoxidans cytochrome c'-α (L16G AxCP-α), a pentacoordinate c-type cytochrome that we show binds HA in its Fe(III) (Kd ∼ 2.5 mM) and Fe(II) (Kd = 0.0345 mM) states. The ∼70-fold higher HA affinity of the Fe(II) state is due mostly to its lower koff value (0.0994 s-1 vs 11 s-1), whereas kon values for Fe(II) (2880 M-1 s-1) and Fe(III) (4300 M-1 s-1) redox states are relatively similar. A comparison of the HA and imidazole affinities of L16G AxCP-α was also used to predict the influence of Fe redox state on HA binding to other proteins. Although HA complexes of L16G AxCP-α decompose via redox reactions, the lifetime of the Fe(II)HA complex was prolonged in the presence of excess reductant. Spectroscopic parameters determined for the Fe(II)HA complex include the N-O stretching vibration of the NH2OH ligand, ν(N-O) = 906 cm-1. Overall, the kinetic trends and spectroscopic benchmarks from this study provide a foundation for future investigations of heme-HA reaction mechanisms.
Collapse
Affiliation(s)
- Brianna N Brown
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Kelsey J Robinson
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Quentin C Durfee
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Demet Kekilli
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Colin R Andrew
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| |
Collapse
|
10
|
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020; 120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Coleman RE, Vilbert AC, Lancaster KM. The Heme-Lys Cross-Link in Cytochrome P460 Promotes Catalysis by Enforcing Secondary Coordination Sphere Architecture. Biochemistry 2020; 59:2289-2298. [PMID: 32525655 DOI: 10.1021/acs.biochem.0c00261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome (cyt) P460 is a c-type monoheme enzyme found in ammonia-oxidizing bacteria (AOB) and methanotrophs; additionally, genes encoding it have been found in some pathogenic bacteria. Cyt P460 is defined by a unique post-translational modification to the heme macrocycle, where a lysine (Lys) residue covalently attaches to the 13' meso carbon of the porphyrin, modifying this heme macrocycle into the enzyme's eponymous P460 cofactor, similar to the cofactor found in the enzyme hydroxylamine oxidoreductase. This cross-link imbues the protein with unique spectroscopic properties, the most obvious of which is the enzyme's green color in solution. Cyt P460 from the AOB Nitrosomonas europaea is a homodimeric redox enzyme that produces nitrous oxide (N2O) from 2 equiv of hydroxylamine. Mutation of the Lys cross-link results in spectroscopic features that are more similar to those of standard cyt c' proteins and renders the enzyme catalytically incompetent for NH2OH oxidation. Recently, the necessity of a second-sphere glutamate (Glu) residue for redox catalysis was established; it plausibly serves as proton relay during the first oxidative half of the catalytic cycle. Herein, we report the first crystal structure of a cross-link deficient cyt P460. This structure shows that the positioning of the catalytically essential Glu changes by approximately 0.8 Å when compared to a cross-linked, catalytically competent cyt P460. It appears that the heme-Lys cross-link affects the relative position of the P460 cofactor with respect to the second-sphere Glu residue, therefore dictating the catalytic competency of the enzyme.
Collapse
Affiliation(s)
- Rachael E Coleman
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Avery C Vilbert
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Ehudin MA, Senft L, Franke A, Ivanović-Burmazović I, Karlin KD. Formation and Reactivity of New Isoporphyrins: Implications for Understanding the Tyr-His Cross-Link Cofactor Biogenesis in Cytochrome c Oxidase. J Am Chem Soc 2019; 141:10632-10643. [PMID: 31150209 DOI: 10.1021/jacs.9b01791] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase (CcO) catalyzes the reduction of dioxygen to water utilizing a heterobinuclear active site composed of a heme moiety and a mononuclear copper center coordinated to three histidine residues, one of which is covalently cross-linked to a tyrosine residue via a post-translational modification (PTM). Although this tyrosine-histidine moiety has functional and structural importance, the pathway behind this net oxidative C-N bond coupling is still unknown. A novel route employing an iron(III) meso-substituted isoporphyrin derivative, isoelectronic with Cmpd-I ((Por•+)FeIV═O), is for the first time proposed to be a key intermediate in the Tyr-His cofactor biogenesis. Newly synthesized iron(III) meso-substituted isoporphyrins were prepared with azide, cyanide, and substituted imidazole functionalities, by adding nucleophiles to an iron(III) π-dication species formed via addition of trifluoroacetic acid to F8Cmpd-I (F8 = (tetrakis(2,6-difluorophenyl)porphyrinate)). Isoporphyrin derivatives were characterized at cryogenic temperatures via ESI-MS and UV-vis, 2H NMR, and EPR spectroscopies. Addition of 1,3,5-trimethoxybenzene or 4-methoxyphenol to the imidazole-substituted isoporphyrin led to formation of the organic product containing the imidazole coupled to aromatic substrate via a new C-N bond, as detected via cryo-ESI-MS. Experimental evidence for the formation of an imidazole-substituted isoporphyrin and its promising reactivity to form the imidazole-phenol coupled product yields viability to the herein proposed pathway behind the PTM (i.e., biogenesis) leading to the key covalent Tyr-His cross-link in CcO.
Collapse
Affiliation(s)
- Melanie A Ehudin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Laura Senft
- Department of Chemistry and Pharmacy , Friedrich-Alexander University Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Alicja Franke
- Department of Chemistry and Pharmacy , Friedrich-Alexander University Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy , Friedrich-Alexander University Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Kenneth D Karlin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
13
|
Smith MA, Majer SH, Vilbert AC, Lancaster KM. Controlling a burn: outer-sphere gating of hydroxylamine oxidation by a distal base in cytochrome P460. Chem Sci 2019; 10:3756-3764. [PMID: 31015919 PMCID: PMC6457333 DOI: 10.1039/c9sc00195f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/14/2019] [Indexed: 01/19/2023] Open
Abstract
One amino acid makes the difference between a metalloenzyme and a metalloprotein in two otherwise effectively identical cytochrome P460s.
Ammonia oxidizing bacteria (AOB) use the cytotoxic, energetic molecule hydroxylamine (NH2OH) as a source of reducing equivalents for cellular respiration. Despite disproportionation or violent decomposition being typical outcomes of reactions of NH2OH with iron, AOB and anammox heme P460 proteins including cytochrome (cyt) P460 and hydroxylamine oxidoreductase (HAO) effect controlled, stepwise oxidation of NH2OH to nitric oxide (NO). Curiously, a recently characterized cyt P460 variant from the AOB Nitrosomonas sp. AL212 is able to form all intermediates of cyt P460 catalysis, but is nevertheless incompetent for NH2OH oxidation. We now show via site-directed mutagenesis, activity assays, spectroscopy, and structural biology that this lack of activity is attributable to the absence of a critical basic glutamate residue in the distal pocket above the heme P460 cofactor. This substitution is the only distinguishing characteristic of a protein that is otherwise effectively structurally and spectroscopically identical to an active variant. This highlights and reinforces a fundamental principal of metalloenzymology: metallocofactor inner-sphere geometric and electronic structures are in many cases insufficient for imbuing reactivity; a precisely defined outer coordination sphere contributed by the polypeptide matrix can be the key differentiator between a metalloenzyme and an unreactive metalloprotein.
Collapse
Affiliation(s)
- Meghan A Smith
- Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA .
| | - Sean H Majer
- Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA .
| | - Avery C Vilbert
- Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA .
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA .
| |
Collapse
|
14
|
Adams HR, Krewson C, Vardanega JE, Fujii S, Moreno-Chicano T, Moreno T, Chicano, Sambongi Y, Svistunenko D, Paps J, Andrew CR, Hough MA. One fold, two functions: cytochrome P460 and cytochrome c'-β from the methanotroph Methylococcus capsulatus (Bath). Chem Sci 2019; 10:3031-3041. [PMID: 30996884 PMCID: PMC6427953 DOI: 10.1039/c8sc05210g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/20/2019] [Indexed: 11/21/2022] Open
Abstract
Nature is adept at utilising highly similar protein folds to carry out very different functions, yet the mechanisms by which this functional divergence occurs remain poorly characterised. In certain methanotrophic bacteria, two homologous pentacoordinate c-type heme proteins have been identified: a cytochrome P460 (cyt P460) and a cytochrome c'-β (cyt cp-β). Cytochromes P460 are able to convert hydroxylamine to nitrous oxide (N2O), a potent greenhouse gas. This reactivity is similar to that of hydroxylamine oxidoreductase (HAO), which is a key enzyme in nitrifying and methanotrophic bacteria. Cyt P460 and HAO both have unusual protein-heme cross-links, formed by a Tyr residue in HAO and a Lys in cyt P460. In contrast, cyts cp-β (the only known cytochromes c' with a β-sheet fold) lack this crosslink and appears to be optimized for binding non-polar molecules (including NO and CO) without enzymatic conversion. Our bioinformatics analysis supports the proposal that cyt cp-β may have evolved from cyt P460 via a gene duplication event. Using high-resolution X-ray crystallography, UV-visible absorption, electron paramagnetic resonance (EPR) and resonance Raman spectroscopy, we have characterized the overall protein folding and active site structures of cyt cp-β and cyt P460 from the obligate methanotroph, Methylococcus capsulatus (Bath). These proteins display a similar β-sheet protein fold, together with a pattern of changes to the heme pocket regions and localised tertiary structure that have converted a hydroxylamine oxidizing enzyme into a gas-binding protein. Structural comparisons provide insights relevant to enzyme redesign for synthetic enzymology and engineering of gas sensor proteins. We also show the widespread occurrence of cyts cp-β and characterise their phylogeny.
Collapse
Affiliation(s)
- Hannah R Adams
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Callie Krewson
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Jenny E Vardanega
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Sotaro Fujii
- Graduate School of Biosphere Science , Hiroshima University , Kagamiyama 1-4-4, Higashi-Hiroshima , Hiroshima , 739-8528 , Japan
| | | | - Tadeo Moreno
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Chicano
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Yoshihiro Sambongi
- Graduate School of Biosphere Science , Hiroshima University , Kagamiyama 1-4-4, Higashi-Hiroshima , Hiroshima , 739-8528 , Japan
| | - Dimitri Svistunenko
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Jordi Paps
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Colin R Andrew
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Michael A Hough
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| |
Collapse
|
15
|
|
16
|
Dey A, Confer AM, Vilbert AC, Moënne-Loccoz P, Lancaster KM, Goldberg DP. A Nonheme Sulfur-Ligated {FeNO} 6 Complex and Comparison with Redox-Interconvertible {FeNO} 7 and {FeNO} 8 Analogues. Angew Chem Int Ed Engl 2018; 57:13465-13469. [PMID: 30125450 DOI: 10.1002/anie.201806146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 01/23/2023]
Abstract
A nonheme {FeNO}6 complex, [Fe(NO)(N3PyS)]2+ , was synthesized by reversible, one-electron oxidation of an {FeNO}7 analogue. This complex completes the first known series of sulfur-ligated {FeNO}6-8 complexes. All three {FeNO}6-8 complexes are readily interconverted by one-electron oxidation/reduction. A comparison of spectroscopic data (UV/Vis, NMR, IR, Mössbauer, X-ray absorption) provides a complete picture of the electronic and structural changes that occur upon {FeNO}6 -{FeNO}8 interconversion. Dissociation of NO from the new {FeNO}6 complex is shown to be controlled by solvent, temperature, and photolysis, which is rare for a sulfur-ligated {FeNO}6 species.
Collapse
Affiliation(s)
- Aniruddha Dey
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alex M Confer
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Avery C Vilbert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Pierre Moënne-Loccoz
- Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
17
|
Dey A, Confer AM, Vilbert AC, Moënne‐Loccoz P, Lancaster KM, Goldberg DP. A Nonheme Sulfur‐Ligated {FeNO}
6
Complex and Comparison with Redox‐Interconvertible {FeNO}
7
and {FeNO}
8
Analogues. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Aniruddha Dey
- Department of Chemistry The Johns Hopkins University Baltimore MD 21218 USA
| | - Alex M. Confer
- Department of Chemistry The Johns Hopkins University Baltimore MD 21218 USA
| | - Avery C. Vilbert
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Pierre Moënne‐Loccoz
- Division of Environmental and Biomolecular Systems Oregon Health and Science University Portland OR 97239 USA
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - David P. Goldberg
- Department of Chemistry The Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
18
|
McGarry JM, Pacheco AA. Upon further analysis, neither cytochrome c 554 from Nitrosomonas europaea nor its F156A variant display NO reductase activity, though both proteins bind nitric oxide reversibly. J Biol Inorg Chem 2018; 23:861-878. [PMID: 29946979 DOI: 10.1007/s00775-018-1582-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/15/2018] [Indexed: 01/02/2023]
Abstract
A re-investigation of the interaction with NO of the small tetraheme protein cytochrome c554 (C554) from Nitrosomonas europaea has shown that the 5-coordinate heme II of the two- or four-electron-reduced protein will nitrosylate reversibly. The process is first order in C554, first order in NO, and second-order overall. The rate constant for NO binding to the heme is 3000 ± 140 M-1s-1, while that for dissociation is 0.034 ± 0.009 s-1; the degree of protein reduction does not appear to significantly influence the nitrosylation rate. In contrast to a previous report (Upadhyay AK, et al. J Am Chem Soc 128:4330, 2006), this study found no evidence of C554-catalyzed NO reduction, either with [Formula: see text] or with [Formula: see text] Some sub-stoichiometric oxidation of the lowest potential heme IV was detected when [Formula: see text] was exposed to an excess of NO, but this is believed to arise from partial intramolecular electron transfer that generates {Fe(NO)}8 at heme II. The vacant heme II coordination site of C554 is crowded by three non-bonding hydrophobic amino acids. After replacing one of these (Phe156) with the smaller alanine, the nitrosylation rate for F156A2- and F156A4- was about 400× faster than for the wild type, though the rate of the reverse denitrosylation process was almost unchanged. Unlike in the wild-type C554, the 6-coordinate low-spin hemes of F156A4- oxidized over the course of several minutes after exposure to NO. Concomitant formation of N2O could explain this heme oxidation, though alternative explanations are equally plausible given the available data.
Collapse
Affiliation(s)
- Jennifer M McGarry
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI, 53211, USA
| | - A Andrew Pacheco
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI, 53211, USA.
| |
Collapse
|
19
|
Lin YW. Structure and function of heme proteins regulated by diverse post-translational modifications. Arch Biochem Biophys 2018; 641:1-30. [PMID: 29407792 DOI: 10.1016/j.abb.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
|
20
|
Cheng HM, Yuan H, Wang XJ, Xu JK, Gao SQ, Wen GB, Tan X, Lin YW. Formation of Cys-heme cross-link in K42C myoglobin under reductive conditions with molecular oxygen. J Inorg Biochem 2018; 182:141-149. [PMID: 29477977 DOI: 10.1016/j.jinorgbio.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022]
Abstract
The structure and function of heme proteins are regulated by diverse post-translational modifications including heme-protein cross-links, with the underlying mechanisms not well understood. In this study, we introduced a Cys (K42C) close to the heme 4-vinyl group in sperm whale myoglobin (Mb) and solved its X-ray crystal structure. Interestingly, we found that K42C Mb can partially form a Cys-heme cross-link (termed K42C Mb-X) under dithiothreitol-induced reductive conditions in presence of O2, as suggested by guanidine hydrochloride-induced unfolding and heme extraction studies. Mass spectrometry (MS) studies, together with trypsin digestion studies, further indicated that a thioether bond is formed between Cys42 and the heme 4-vinyl group with an additional mass of 16 Da, likely due to hydroxylation of the α‑carbon. We then proposed a plausible mechanism for the formation of the novel Cys-heme cross-link based on MS, kinetic UV-vis and electron paramagnetic resonance (EPR) studies. Moreover, the Cys-heme cross-link was shown to fine-tune the protein reactivity toward activation of H2O2. This study provides valuable insights into the post-translational modification of heme proteins, and also suggests that the Cys-heme cross-link can be induced to form in vitro, making it useful for design of new heme proteins with a non-dissociable heme and improved functions.
Collapse
Affiliation(s)
- Hui-Min Cheng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry, Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Kun Xu
- Yellow Sea Fisheries Research Institute, Qingdao 266071, China
| | - Shu-Qin Gao
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry, Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Lab of Protein Structure and Function, University of South China, Hengyang 421001, China.
| |
Collapse
|
21
|
Smith MA, Lancaster KM. The Eponymous Cofactors in Cytochrome P460s from Ammonia-Oxidizing Bacteria Are Iron Porphyrinoids Whose Macrocycles Are Dibasic. Biochemistry 2018; 57:334-343. [PMID: 29211462 PMCID: PMC6361160 DOI: 10.1021/acs.biochem.7b00921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymes hydroxylamine oxidoreductase and cytochrome (cyt) P460 contain related unconventional "heme P460" cofactors. These cofactors are unusual in their inclusion of nonstandard cross-links between amino acid side chains and the heme macrocycle. Mutagenesis studies performed on the Nitrosomonas europaea cyt P460 that remove its lysine-heme cross-link show that the cross-link is key to defining the spectroscopic properties and kinetic competence of the enzyme. However, exactly how this cross-link confers these features remains unclear. Here we report the 1.45 Å crystal structure of cyt P460 from Nitrosomonas sp. AL212 and conclude that the cross-link does not lead to a change in hybridization of the heme carbon participating in the cross-link but rather enforces structural distortions to the macrocycle away from planarity. Time-dependent density functional theory coupled to experimental structural and spectroscopic analysis suggest that this geometric distortion is sufficient to define the spectroscopic properties of the heme P460 cofactor and provide clues toward establishing a relationship between heme P460 electronic structure and function.
Collapse
Affiliation(s)
- Meghan A Smith
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|