1
|
Chen W, Wu R, Wang W, Zhou H, Fu M. NBS-promoted regioselective thiocyanatothiolation of alkenes with free thiols and NH 4SCN. Org Biomol Chem 2025. [PMID: 39902720 DOI: 10.1039/d4ob02020k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
An efficient NBS-promoted three-component thiocyanatothiolation of alkenes with free thiols and NH4SCN has been developed. This protocol avoids tedious preactivation of thiols and employs a diverse range of accessible thiols directly as sulfur sources. Moreover, the reaction exhibits regioselectivity and shows high compatibility with styrenes and unactivated alkenes. Preliminary mechanism studies revealed that both a radical pathway and thiol-oxidation-coupling were involved in this protocol.
Collapse
Affiliation(s)
- Wei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Run Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Wanxiang Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Haiping Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Mingyue Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
2
|
Ucheniya K, Jat PK, Chouhan A, Yadav L, Badsara SS. Electrochemical selective divergent C-H chalcogenocyanation of N-heterocyclic scaffolds. Org Biomol Chem 2024; 22:3220-3224. [PMID: 38577798 DOI: 10.1039/d4ob00448e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
An electrochemical direct selective C-H chalcogenocyanation approach for indolizine derivatives under mild conditions has been described. Cyclic enone-fused, chromone-fused and 2-substituted indolizines possessing EDGs (electron donating groups) and EWGs (electron withdrawing groups) were successfully reacted with NH4SCN and KSeCN under electrochemical conditions to provide a wide array of mono and bis-chalcogenocyanate-indolizines in 75-94% yields. In addition, 1-substituted imidazo[1,5-a]quinolines were also successfully chalcogenocyanated under the optimized reaction conditions providing a platform for the synthesis of pharmaceutically privileged molecules. By switching the reaction conditions, the developed protocol offers selective synthesis of C-3 thiocyanate and 1,3 bis-thiocyanate indolizines in good to excellent yields under catalyst-free conditions. On the basis of control experiments and cyclic voltammetry data, a plausible reaction pathway is also presented.
Collapse
Affiliation(s)
- Kusum Ucheniya
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| | - Pooja Kumari Jat
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| | - Amreen Chouhan
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| | - Lalit Yadav
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| |
Collapse
|
3
|
Ramos De Dios SM, Tiwari VK, McCune CD, Dhokale RA, Berkowitz DB. Biomacromolecule-Assisted Screening for Reaction Discovery and Catalyst Optimization. Chem Rev 2022; 122:13800-13880. [PMID: 35904776 DOI: 10.1021/acs.chemrev.2c00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction discovery and catalyst screening lie at the heart of synthetic organic chemistry. While there are efforts at de novo catalyst design using computation/artificial intelligence, at its core, synthetic chemistry is an experimental science. This review overviews biomacromolecule-assisted screening methods and the follow-on elaboration of chemistry so discovered. All three types of biomacromolecules discussed─enzymes, antibodies, and nucleic acids─have been used as "sensors" to provide a readout on product chirality exploiting their native chirality. Enzymatic sensing methods yield both UV-spectrophotometric and visible, colorimetric readouts. Antibody sensors provide direct fluorescent readout upon analyte binding in some cases or provide for cat-ELISA (Enzyme-Linked ImmunoSorbent Assay)-type readouts. DNA biomacromolecule-assisted screening allows for templation to facilitate reaction discovery, driving bimolecular reactions into a pseudo-unimolecular format. In addition, the ability to use DNA-encoded libraries permits the barcoding of reactants. All three types of biomacromolecule-based screens afford high sensitivity and selectivity. Among the chemical transformations discovered by enzymatic screening methods are the first Ni(0)-mediated asymmetric allylic amination and a new thiocyanopalladation/carbocyclization transformation in which both C-SCN and C-C bonds are fashioned sequentially. Cat-ELISA screening has identified new classes of sydnone-alkyne cycloadditions, and DNA-encoded screening has been exploited to uncover interesting oxidative Pd-mediated amido-alkyne/alkene coupling reactions.
Collapse
Affiliation(s)
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Christopher D McCune
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ranjeet A Dhokale
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
4
|
Tiwari VK, Powell DR, Broussy S, Berkowitz DB. Rapid Enantioselective and Diastereoconvergent Hybrid Organic/Biocatalytic Entry into the Oseltamivir Core. J Org Chem 2021; 86:6494-6503. [PMID: 33857378 DOI: 10.1021/acs.joc.1c00326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A formal synthesis of the antiviral drug (-)-oseltamivir (Tamiflu) has been accomplished starting from m-anisic acid via a dissolving metal or electrochemical Birch reduction. The correct absolute stereochemistry is efficiently set through enzyme-catalyzed carbonyl reduction on the resultant racemic α,β-unsaturated ketone. A screen of a broad ketoreductase (KRED) library identified several that deliver the desired allylic alcohol with nearly perfect facial selectivity at the new center for each antipodal substrate, indicating that the enzyme also is able to completely override inherent diastereomeric bias in the substrate. Conversion is complete, with d-glucose serving as the terminal hydride donor (glucose dehydrogenase). For each resulting diastereomeric secondary alcohol, O/N-interconversion is then efficiently effected either by synfacial [3,3]-sigmatropic allylic imidate rearrangement or by direct, stereoinverting N-Mitsunobu chemistry. Both stereochemical outcomes have been confirmed crystallographically. The α,β-unsaturation is then introduced via an α-phenylselenylation/oxidation/pyrolysis sequence to yield the targeted (S)-N-acyl-protected 5-amino-1,3-cyclohexadiene carboxylates, key advanced intermediates for oseltamivir pioneered by Corey (N-Boc) and Trost (N-phthalamido), respectively.
Collapse
Affiliation(s)
- Virendra K Tiwari
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Douglas R Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Sylvain Broussy
- University of Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, F-75006 Paris, France
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| |
Collapse
|
5
|
Chen J, Yang H, Zhang M, Chen H, Liu J, Yin K, Chen S, Shao A. Electrochemical-induced regioselective C-3 thiocyanation of imidazoheterocycles with hydrogen evolution. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Li X, Liu T, Zhang B, Zhang D, Shi H, Yu Z, Tao S, Du Y. Formation of Carbon-Carbon Bonds Mediated by Hypervalent Iodine Reagents Under Metal-free Conditions. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200211093103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the past several decades, hypervalent iodine reagents have been widely
used in various organic transformations. Specifically, these exclusive classes of reagents
have been extensively used for the construction of carbon-carbon bonds. This review aims
to cover all the reactions involving the construction of carbon-carbon bonds mediated by
hypervalent iodine reagents, providing references and highlights for synthetic chemists
who are interested in hypervalent iodine chemistry.
Collapse
Affiliation(s)
- Xiaoxian Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tongxing Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Dongke Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Haofeng Shi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenyang Yu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shanqing Tao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Bai Z, Bai Z, Song F, Wang H, Chen G, He G. Palladium-Catalyzed Amide-Directed Hydrocarbofunctionalization of 3-Alkenamides with Alkynes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04285] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zibo Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziqian Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fangfang Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Song XF, Ye AH, Xie YY, Dong JW, Chen C, Zhang Y, Chen ZM. Lewis-Acid-Mediated Thiocyano Semipinacol Rearrangement of Allylic Alcohols for Construction of α-Quaternary Center β-Thiocyano Carbonyls. Org Lett 2019; 21:9550-9554. [PMID: 31742419 DOI: 10.1021/acs.orglett.9b03722] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An electrophilic thiocyano semipinacol rearrangement of allylic alcohols has been achieved for the first time by using N-thiocyano-dibenzenesulfonimide (NTSI). This approach provides a direct, simple, and efficient strategy for the formation of thiocyano carbonyl compounds with moderate to excellent yields. Meanwhile, an all-carbon quaternary center was rapidly constructed. In addition, an asymmetric version of this tandem reaction was preliminarily investigated.
Collapse
Affiliation(s)
- Xu-Feng Song
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Ai-Hui Ye
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Yu-Yang Xie
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Jia-Wei Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Chao Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| |
Collapse
|
9
|
Wu HQ, Yang K, Luo SH, Wu XY, Wang N, Chen SH, Wang ZY. C4-Selective Synthesis of Vinyl Thiocyanates and Selenocyanates Through 3,4-Dihalo-2(5H
)-furanones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Han-Qing Wu
- School of Chemistry and Environment; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; South China Normal University; 510006 Guangzhou People′s Republic of China
- School of Pharmaceutical Sciences; Xiamen University; 361005 Xiamen People′s Republic of China
| | - Kai Yang
- School of Chemistry and Environment; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; South China Normal University; 510006 Guangzhou People′s Republic of China
- College of Pharmacy; Gannan Medical University; 341000 Ganzhou People′s Republic of China
| | - Shi-He Luo
- School of Chemistry and Environment; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; South China Normal University; 510006 Guangzhou People′s Republic of China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; 381 Wushan Road 510640 Guangzhou People's Republic of China
| | - Xin-Yan Wu
- School of Chemistry and Environment; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; South China Normal University; 510006 Guangzhou People′s Republic of China
| | - Neng Wang
- School of Chemistry and Environment; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; South China Normal University; 510006 Guangzhou People′s Republic of China
| | - Si-Hong Chen
- School of Chemistry and Environment; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; South China Normal University; 510006 Guangzhou People′s Republic of China
| | - Zhao-Yang Wang
- School of Chemistry and Environment; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; South China Normal University; 510006 Guangzhou People′s Republic of China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; 381 Wushan Road 510640 Guangzhou People's Republic of China
| |
Collapse
|
10
|
Hoque IU, Chowdhury SR, Maity S. Photoredox-Catalyzed Intermolecular Radical Arylthiocyanation/Arylselenocyanation of Alkenes: Access to Aryl-Substituted Alkylthiocyanates/Alkylselenocyanates. J Org Chem 2019; 84:3025-3035. [DOI: 10.1021/acs.joc.8b03155] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Injamam Ul Hoque
- Department of Applied Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| | | | - Soumitra Maity
- Department of Applied Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| |
Collapse
|
11
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Kong DL, Du JX, Chu WM, Ma CY, Tao JY, Feng WH. Ag/Pyridine Co-Mediated Oxidative Arylthiocyanation of Activated Alkenes. Molecules 2018; 23:molecules23102727. [PMID: 30360416 PMCID: PMC6222345 DOI: 10.3390/molecules23102727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022] Open
Abstract
An efficient Ag/pyridine co-mediated oxidative arylthiocyanation of activated alkenes via radical addition/cyclization cascade process was developed. This reaction could be carried out under mild conditions to provide biologically interesting 3-alkylthiocyanato-2-oxindoles in good to excellent yields. Mechanistic studies suggested a unique NCS• radical addition path and clarified the dual roles of catalytic pyridine as base and crucial ligand to accelerate the oxidation of Ag(I) to Ag(II), which is likely oxidant responsible for the formation of NCS• radical. These mechanistic results may impact the design and refinement of other radical based reactions proceeding through catalytic oxidations mediated by Ag(I)-pyridine/persulfate. The chemical versatility of thiocyanate moiety was also highlighted via SCN-tailoring chemistry in post-synthetic transformation for new S-C(sp3/sp2/sp), S-P, and S-S bonds constructions. The protocol provides an easy access to many important bioisosteres in medicinal chemistry and an array of sulfur-containing 2-oxindoles that are difficult to prepare by other approaches.
Collapse
Affiliation(s)
- De-Long Kong
- Department of New Drug Research and Development, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Jian-Xun Du
- Department of New Drug Research and Development, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Wei-Ming Chu
- Department of New Drug Research and Development, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Chun-Ying Ma
- Department of New Drug Research and Development, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Jia-Yi Tao
- Department of New Drug Research and Development, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Wen-Hua Feng
- Department of New Drug Research and Development, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
13
|
Laali KK, Greves WJ, Zwarycz AT, Correa Smits SJ, Troendle FJ, Borosky GL, Akhtar S, Manna A, Paulus A, Chanan-Khan A, Nukaya M, Kennedy GD. Synthesis, Computational Docking Study, and Biological Evaluation of a Library of Heterocyclic Curcuminoids with Remarkable Antitumor Activity. ChemMedChem 2018; 13:1895-1908. [PMID: 30079563 DOI: 10.1002/cmdc.201800320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/27/2018] [Indexed: 12/16/2022]
Abstract
In a continuing search for curcuminoid (CUR) compounds with antitumor activity, a novel series of heterocyclic CUR-BF2 adducts and CUR compounds based on indole, benzothiophene, and benzofuran along with their aryl pyrazoles were synthesized. Computational docking studies were performed to compare binding efficiency to target proteins involved in specific cancers, namely HER2, proteasome, VEGFR, BRAF, and Bcl-2, versus known inhibitor drugs. The majority presented very good binding affinities, similar to, and even more favorable than those of known inhibitors. The indole-based CUR-BF2 and CUR compounds and their bis-thiocyanato derivatives exhibited high anti-proliferative and apoptotic activity by in vitro bioassays against a panel of 60 cancer cell lines, more specifically against multiple myeloma (MM) cell lines (KMS11, MM1.S, and RPMI-8226) with significantly lower IC50 values versus healthy PBMC cells; they also exhibited higher anti-proliferative activity in human colorectal cancer cells (HCT116, HT29, DLD-1, RKO, SW837, and Caco2) than the parent curcumin, while showing notably lower cytotoxicity in normal colon cells (CCD112CoN and CCD841CoN).
Collapse
Affiliation(s)
- Kenneth K Laali
- Department of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - William J Greves
- Department of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Angela T Zwarycz
- Department of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | | | - Frederick J Troendle
- Department of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Gabriela L Borosky
- INFIQC, CONICET and Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| | - Sharoon Akhtar
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alak Manna
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Aneel Paulus
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.,Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Asher Chanan-Khan
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Manabu Nukaya
- Department of Surgery, University of Alabama-Birmingham School of Medicine, Birmingham, AL, 35294-0016, USA
| | - Gregory D Kennedy
- Department of Surgery, University of Alabama-Birmingham School of Medicine, Birmingham, AL, 35294-0016, USA
| |
Collapse
|
14
|
Zhang W, Guo JT, Yu Y, Guan Z, He YH. Photocatalytic anion oxidation achieves direct aerobic difunctionalization of alkenes leading to β -thiocyanato alcohols. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Swyka RA, Berkowitz DB. The In Situ Enzymatic Screening (ISES) Approach to Reaction Discovery and Catalyst Identification. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2017; 9:285-305. [PMID: 29241292 PMCID: PMC5734113 DOI: 10.1002/cpch.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The importance of discovering new chemical transformations and/or optimizing catalytic combinations has led to a flurry of activity in reaction screening. The in situ enzymatic screening (ISES) approach described here utilizes biological tools (enzymes/cofactors) to advance chemistry. The protocol interfaces an organic reaction layer with an adjacent aqueous layer containing reporting enzymes that act upon the organic reaction product, giving rise to a spectroscopic signal. ISES allows the experimentalist to rapidly glean information on the relative rates of a set of parallel organic/organometallic reactions under investigation, without the need to quench the reactions or draw aliquots. In certain cases, the real-time enzymatic readout also provides information on sense and magnitude of enantioselectivity and substrate specificity. This article contains protocols for single-well (relative rate) and double-well (relative rate/enantiomeric excess) ISES, in addition to a colorimetric ISES protocol and a miniaturized double-well procedure. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Robert A Swyka
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska
| | | |
Collapse
|