1
|
Bibik YS, Yulakh IM, Shishkina SV, Khomenko DM, Doroshchuk RO, Raspertova IV, Lampeka RD. Syntheses and crystal structures of ( R, R)- and ( S, S)-bis-(aceto-nitrile-κ N)[ N, N'-dimethyl- N, N'-bis(pyridin-2-ylmeth-yl)cyclo-hexane-1,2-di-amine-κ 4 N]iron(II) bis-(hexa-fluoro-anti-monate). Acta Crystallogr E Crystallogr Commun 2024; 80:1350-1353. [PMID: 39906770 PMCID: PMC11789190 DOI: 10.1107/s2056989024011307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 02/06/2025]
Abstract
Two enanti-omeric non-heme iron complexes [Fe(R,R-BPMCN)(CH3CN)2](SbF6)2 and [Fe(S,S-BPMCN)(CH3CN)2](SbF6)2 (BPMCM = N,N'-dimethyl-N,N'-bis-(pyridin-2-ylmeth-yl)-cyclo-hexane-1,2-di-amine, C22H28N4) were obtained in parallel syntheses starting from the enanti-omerically pure R,R and S,S BPMCN ligands. The FeII cations have a distorted octa-hedral FeN6 geometry formed by a chelating N,N,N,N-tetra-dentate BPMCN ligand and two mol-ecules of aceto-nitrile. The ligand adopts a cis-α topology with the two pyridine groups coordinated trans to each other. In the crystals, a system of C-H⋯F hydrogen bonds links the cations to the hexa-fluoro-anti-monate anions, resulting in a three-dimensional architecture.
Collapse
Affiliation(s)
- Yurii S. Bibik
- Department of Chemistry Kyiv National Taras Shevchenko University Volodymyrska st 64 Kyiv Ukraine
| | - Iryna M. Yulakh
- Department of Chemistry Kyiv National Taras Shevchenko University Volodymyrska st 64 Kyiv Ukraine
- Enamine Ltd. (www.enamine.net), Winston Churchill St.78, Kyiv 02094, Ukraine
| | - Svitlana V. Shishkina
- SSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02098 Kyiv, Ukraine
| | - Dmytro M. Khomenko
- Department of Chemistry Kyiv National Taras Shevchenko University Volodymyrska st 64 Kyiv Ukraine
- Enamine Ltd. (www.enamine.net), Winston Churchill St.78, Kyiv 02094, Ukraine
| | - Roman O. Doroshchuk
- Department of Chemistry Kyiv National Taras Shevchenko University Volodymyrska st 64 Kyiv Ukraine
- Enamine Ltd. (www.enamine.net), Winston Churchill St.78, Kyiv 02094, Ukraine
| | - Ilona V. Raspertova
- Department of Chemistry Kyiv National Taras Shevchenko University Volodymyrska st 64 Kyiv Ukraine
- Enamine Ltd. (www.enamine.net), Winston Churchill St.78, Kyiv 02094, Ukraine
| | - Rostyslav D. Lampeka
- Department of Chemistry Kyiv National Taras Shevchenko University Volodymyrska st 64 Kyiv Ukraine
| |
Collapse
|
2
|
Misawa-Suzuki T, Nagao H. Ru(IV)-Ru(IV) complexes having the doubly oxido-bridged core with a bridging carbonato or hydrogencarbonato ligand. Dalton Trans 2023; 52:2863-2871. [PMID: 36762568 DOI: 10.1039/d2dt04080h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Ru(IV)-Ru(IV) complexes having the doubly oxido-bridged diamond core with a bridging carbonato or hydrogencarbonato ligand, [{RuIV(ebpma)}2(μ-O)2(μ-O2CO(H)m)]Xn (ebpma; ethylbis(2-pyridylmethyl)amine, m = 0; [IV,IV]X2 (X = PF6, ClO4), m = 1; [IV,IV_1H](ClO4)3), were isolated via the oxidation of the corresponding carbonato-bridged Ru(III)-Ru(IV) complex ([III,IV]+), and "[IV,IV](ClO4)2 and [IV,IV_1H](ClO4)3" were structurally characterized. The electrochemical and spectroscopic properties of [IV,IV]2+ and [IV,IV_1H]3+ were investigated both in organic solvents and aqueous solutions. The reactivity toward organic solvents having (a) methyl group(s) and reactions with organic substrates were studied as well. This should be the first time when systematic comparisons of the Ru(IV)-Ru(IV) species and corresponding Ru(III)-Ru(IV) complexes in the same tridentate ligand system were made.
Collapse
Affiliation(s)
- Tomoyo Misawa-Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Hirotaka Nagao
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
3
|
Huang XK, Li LP, Zhou HY, Xiong MF, Fan JY, Ye BH. Switching the Photoreactions of Ir(III) Diamine Complexes between C-N Coupling and Dehydrogenation under Visible Light Irradiation. Inorg Chem 2022; 61:20834-20847. [PMID: 36520143 DOI: 10.1021/acs.inorgchem.2c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The selective photoreactions under mild conditions play an important role in synthetic chemistry. Herein, efficient and mild protocols for switching the photoreactions of Ir(III)-diamine complexes between the interligand C-N coupling and dehydrogenation are developed in the presence of O2 in EtOH solution. The photoreactions of achiral diamine complexes rac-[Ir(L)2(dm)](PF6) (L is 2-phenylquinoline or 2-(2,4-difluorophenyl)quinoline, dm is 1,2-ethylenediamine, 1,2-diaminopropane, 2-methyl-1,2-diamino-propane, or N,N'-dimethyl-1,2-ethylenediamine) are competitive in the oxidative C-N coupling and dehydrogenation at room temperature, which can be switched into the interligand C-N coupling reaction at 60 °C, affording hexadentate complexes in good to excellent yields, or the dehydrogenative reaction in the presence of a catalytic amount of TEMPO as an additive, affording imine complexes. Mechanism studies reveal that 1O2 is the major reactive oxygen species, and metal aminyl is the key intermediate in the formation of the oxidative C-N coupling and imine products in the photoreaction processes. These will provide a new and practical protocol for the synthesis of multidentate and imine ligands in situ via the postcoordinated strategy under mild conditions.
Collapse
Affiliation(s)
- Xiao-Kang Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 Guangdong, China
| | - Li-Ping Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 Guangdong, China
| | - Hai-Yun Zhou
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275 Guangdong, China
| | - Ming-Feng Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 Guangdong, China
| | - Jing-Yan Fan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 Guangdong, China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 Guangdong, China
| |
Collapse
|
4
|
Recent progress in oxidation chemistry of high-valent ruthenium-oxo and osmium-oxo complexes and related species. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Abstract
The oxidation of hydrocarbons of different structures under the same conditions is an important stage in the study of the chemical properties of both the hydrocarbons themselves and the oxidation catalysts. In a 50% H2O2/Cu2Cl4·2DMG/CH3CN system, where DMG is dimethylglyoxime (Butane-2,3-dione dioxime), at 50 °C under the same or similar conditions, we oxidized eleven RH hydrocarbons of different structures: mono-, bi- and tri-cyclic, framework and aromatic. To compare the composition of the oxidation products of these hydrocarbons, we introduced a new quantitative characteristic, “distributive oxidation depth D(O), %” and showed the effectiveness of its application. The adiabatic ionization potentials (AIP) and the vertical ionization potentials (VIP) of the molecules of eleven oxidized and related hydrocarbons were calculated using the DFT method in the B3LYP/TZVPP level of theory for comparison with experimental values and correlation with D(O). The same calculations of AIP were made for the molecules of the oxidant, solvent, DMG, related compounds and products. It is shown that component X, which determines the mechanism of oxidation of hydrocarbons RH with AIP(Exp) ≥ AIP(X) = 8.55 ± 0.03 eV, is a trans-DMG molecule. Firstly theoretically estimated experimental values of AIP(trans-DMG) = 8.53 eV and AIP(cis-DMG) = 8.27 eV.
Collapse
|
6
|
Costas M. Site and Enantioselective Aliphatic C-H Oxidation with Bioinspired Chiral Complexes. CHEM REC 2021; 21:4000-4014. [PMID: 34609780 DOI: 10.1002/tcr.202100227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Selective oxidation of aliphatic C-H bonds stands as an unsolved problem in organic synthesis, with the potential to offer novel paths for preparing molecules of biological interest. The quest for reagents that can perform this class of reactions finds oxygenases and their mechanisms of action as inspiration motifs. Among the numerous families of synthetic catalysts that have been explored, complexes with linear tetraazadentate ligands combining two aliphatic amines and two aromatic amine heterocycles display a structural versatility proven instrumental in the design of C-H oxidation reactions showing site and enantioselectivities, not accessible by conventional oxidants. This manuscript makes a review of recent advances in the field.
Collapse
Affiliation(s)
- Miquel Costas
- Department of Chemistry and Institut de Química Computacional I Catàlisi (IQCC), Universitat de Girona Facultat de Ciències, Campus de Montilivi, 17003, Girona, Spain
| |
Collapse
|
7
|
Chen X, Yao S, Li L, Ye B. Diastereoselective Photoreaction of Ir(
III
) Amine Complexes for Generation of New Multidentate Ligands
in situ
via a Postcoordinated
Interligand‐Coupling
Strategy. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xing‐Yang Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat‐sen University Guangzhou Guangdong 510275 China
| | - Su‐Yang Yao
- Department of Chemistry Guangdong University of Education Guangzhou Guangdong 510303 China
| | - Li‐Ping Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat‐sen University Guangzhou Guangdong 510275 China
| | - Bao‐Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat‐sen University Guangzhou Guangdong 510275 China
| |
Collapse
|
8
|
Achard T, Bellemin‐Laponnaz S. Recent Advances on Catalytic Osmium‐Free Olefin
syn
‐Dihydroxylation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Thierry Achard
- Département des Matériaux Organiques Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) Université de Strasbourg CNRS UMR‐7504 23 rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Stéphane Bellemin‐Laponnaz
- Département des Matériaux Organiques Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) Université de Strasbourg CNRS UMR‐7504 23 rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| |
Collapse
|
9
|
Peng HL, Li Y, Chen XY, Li LP, Ke Z, Ye BH. Visible-Light-Induced Amination of Quinoline at the C8 Position via a Postcoordinated Interligand-Coupling Strategy under Mild Conditions. Inorg Chem 2021; 60:908-918. [PMID: 33393292 DOI: 10.1021/acs.inorgchem.0c03026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The postcoordinated interligand-coupling strategy provides a useful and complementary protocol for synthesizing polydentate ligands. Herein, diastereoselective photoreactions of Λ-[Ir(pq)2(d-AA)] (Λ-d) and Λ-[Ir(pq)2(l-AA)] (Λ-l, where pq is 2-phenylquinoline and AA is an amino acid) are reported in the presence of O2 under mild conditions. Diastereomer Λ-d is dehydrogenatively oxidized into an imino acid complex, while diastereomer Λ-l mainly occurs via interligand C-N cross-dehydrogenative coupling between quinoline at the C8 position and AA ligands at room temperature, affording Λ-[Ir(pq)(l-pq-AA)]. Furthermore, the photoreaction of diastereomer Λ-l is temperature-dependent. Mechanistic experiments reveal the ligand-radical intermediates may be involved in the reaction. Density functional theory calculations were used to eluciate the origin of diastereoselectivity and temperature dependence. This will provide a new protocol for the amination of quinoline at the C8 position via the postcoordinated interligand C-N cross-coupling strategy under mild conditions.
Collapse
Affiliation(s)
- He-Long Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yinwu Li
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xing-Yang Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Li-Ping Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| |
Collapse
|
10
|
Zhou XT, Yu HY, Li Y, Xue C, Ji HB. Cerium(IV) Sulfate as a Cocatalyst for Promoting the Direct Epoxidation of Propylene by Ruthenium Porphyrin with Molecular Oxygen. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Hai-Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Yang Li
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P. R. China
| |
Collapse
|
11
|
Khusnutdinov RI, Shchadneva NA. Metal complex catalysis in the chemistry of lower diamondoids. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review presents the first survey of published data on the use of compounds, complexes and nanoparticles of transition metals (Fe, Co, Ni, Mn, V, Mo, Cu, Pd, Pt, Rh, Ru, Os, Au, Re and Th) in the catalytic transformations of lower diamondoids — adamantane, diamantane and their derivatives. Catalytic halogenation, oxidation, alkylation and cross-coupling reactions are considered, and the formation pathways of C–N, C–S and C–Se bonds in the series of adamantanoids are discussed. Reaction conditions, appropriate catalytic systems and the structures of products are presented.
The bibliography includes 242 references.
Collapse
|