1
|
Sharma A, Zhu Y, Spangler EJ, Hoang TB, Laradji M. Highly Ordered Nanoassemblies of Janus Spherocylindrical Nanoparticles Adhering to Lipid Vesicles. ACS NANO 2024; 18:12957-12969. [PMID: 38720633 DOI: 10.1021/acsnano.4c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In recent years, there has been a heightened interest in the self-assembly of nanoparticles (NPs) that is mediated by their adsorption onto lipid membranes. The interplay between the adhesive energy of NPs on a lipid membrane and the membrane's curvature energy causes it to wrap around the NPs. This results in an interesting membrane curvature-mediated interaction, which can lead to the self-assembly of NPs on lipid membranes. Recent studies have demonstrated that Janus spherical NPs, which adhere to lipid vesicles, can self-assemble into well-ordered nanoclusters with various geometries, including a few Platonic solids. The present study explores the additional effect of geometric anisotropy on the self-assembly of Janus NPs on lipid vesicles. Specifically, the current study utilized extensive molecular dynamics simulations to investigate the arrangement of Janus spherocylindrical NPs on lipid vesicles. We found that the additional geometric anisotropy significantly expands the range of NPs' self-assemblies on lipid vesicles. The specific geometries of the resulting nanoclusters depend on several factors, including the number of Janus spherocylindrical NPs adhering to the vesicle and their aspect ratio. The lipid membrane-mediated self-assembly of NPs, demonstrated by this work, provides an alternative cost-effective route for fabricating highly engineered nanoclusters in three dimensions. Such structures, with the current wide range of material choices, have great potential for advanced applications, including biosensing, bioimaging, drug delivery, nanomechanics, and nanophotonics.
Collapse
Affiliation(s)
- Abash Sharma
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Yu Zhu
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eric J Spangler
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Thang B Hoang
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
2
|
Nambiar N, Loyd ZA, Abel SM. Particle Deformability Enables Control of Interactions between Membrane-Anchored Nanoparticles. J Chem Theory Comput 2024; 20:1732-1739. [PMID: 37844420 DOI: 10.1021/acs.jctc.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Nanoparticles adsorbed on a membrane can induce deformations of the membrane that give rise to effective interactions between the particles. Previous studies have focused primarily on rigid nanoparticles with fixed shapes. However, DNA origami technology has enabled the creation of deformable nanostructures with controllable shapes and mechanical properties, presenting new opportunities to modulate interactions between particles adsorbed on deformable surfaces. Here we use coarse-grained molecular dynamics simulations to investigate deformable, hinge-like nanostructures anchored to lipid membranes via cholesterol anchors. We characterize deformations of the particles and membrane as a function of the hinge stiffness. Flexible particles adopt open configurations to conform to a flat membrane, whereas stiffer particles induce deformations of the membrane. We further show that particles spontaneously aggregate and that cooperative effects lead to changes in their shape when they are close together. Using umbrella sampling methods, we quantify the effective interaction between two particles and show that stiffer hinge-like particles experience stronger and longer-ranged attraction. Our results demonstrate that interactions between deformable, membrane-anchored nanoparticles can be controlled by modifying mechanical properties of the particles, suggesting new ways to modulate the self-assembly of particles on deformable surfaces.
Collapse
Affiliation(s)
- Nikhil Nambiar
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zachary A Loyd
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
3
|
Gowda A, Pathak SK, Rohaley GAR, Acharjee G, Oprandi A, Williams R, Prévôt ME, Hegmann T. Organic chiral nano- and microfilaments: types, formation, and template applications. MATERIALS HORIZONS 2024; 11:316-340. [PMID: 37921354 DOI: 10.1039/d3mh01390a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Organic chiral nanofilaments are part of an important class of nanoscale chiral materials that has recently been receiving significant attention largely due to their potential use in applications such as optics, photonics, metameterials, and potentially a range of medical as well as sensing applications. This review will focus on key examples of the formation of such nano- and micro-filaments based on carbon nanofibers, polymers, synthetic oligo- and polypeptides, self-assembled organic molecules, and one prominent class of liquid crystals. The most critical aspects discussed here are the underlying driving forces for chiral filament formation, potentially answering why specific sizes and shapes are formed, what molecular design strategies are working equally well or rather differently among these materials classes, and what uses and applications are driving research in this fascinating field of materials science.
Collapse
Affiliation(s)
- Ashwathanarayana Gowda
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Suraj Kumar Pathak
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Grace A R Rohaley
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Gourab Acharjee
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Andrea Oprandi
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Ryan Williams
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
4
|
Rapid In-Process Measurement of Live Virus Vaccine Potency Using Laser Force Cytology: Paving the Way for Rapid Vaccine Development. Vaccines (Basel) 2022; 10:vaccines10101589. [PMID: 36298454 PMCID: PMC9608199 DOI: 10.3390/vaccines10101589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Vaccinations to prevent infectious diseases are given to target the body’s innate and adaptive immune systems. In most cases, the potency of a live virus vaccine (LVV) is the most critical measurement of efficacy, though in some cases the quantity of surface antigen on the virus is an equally critical quality attribute. Existing methods to measure the potency of viruses include plaque and TCID50 assays, both of which have very long lead times and cannot provide real time information on the quality of the vaccine during large-scale manufacturing. Here, we report the evaluation of LumaCyte’s Radiance Laser Force Cytology platform as a new way to measure the potency of LVVs in upstream biomanufacturing process in real time and compare this to traditional TCID50 potency. We also assess this new platform as a way to detect adventitious agents, which is a regulatory expectation for the release of commercial vaccines. In both applications, we report the ability to obtain expedited and relevant potency information with strong correlation to release potency methods. Together, our data propose the application of Laser Force Cytology as a valuable process analytical technology (PAT) for the timely measurement of critical quality attributes of LVVs.
Collapse
|
5
|
Sarkar MK, Karal MAS, Levadny V, Belaya M, Ahmed M, Ahamed MK, Ahammed S. Effects of sugar concentration on the electroporation, size distribution and average size of charged giant unilamellar vesicles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:401-412. [PMID: 35716178 DOI: 10.1007/s00249-022-01607-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
We investigated the effects of sugar concentration on the electroporation, size distribution and average size of giant unilamellar vesicles (GUVs). GUVs were prepared from 40 mol% of 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) and 60 mol% of 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids. Pulsed electric field was applied to the 40%DOPG/60%DOPC-GUVs and it induced lateral electric tension (σc) in the membranes of vesicles. The σc-induced probability of rupture (Ppore) and the rate constant of rupture (kp) of GUVs under the sugar concentration, c = 40, 100 and 300 mM, were determined. Both the Ppore and kp increased with the increase of σc, but higher tension was required to generate the same values of Ppore and kp with increasing c. We also investigated average sizes of GUVs from the size distribution of vesicles under various sugar concentrations. With the increase of c, the peak of the size distribution histograms shifted to the region of smaller vesicles. The average size decreased 1.6-fold when c increased from 10 to 300 mM. These investigations help to understand various biomedical, biophysical, and biochemical processes in vesicles and cells. Electroporation, size distribution and average size of charged GUVs were investigated under various sugar concentrations. The sugar concentration influences the electroporation of vesicles and the average size of GUVs.
Collapse
Affiliation(s)
- Malay Kumar Sarkar
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Arts and Sciences, Ahsanullah University of Science and Technology, Dhaka, 1208, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Victor Levadny
- Theoretical Problem Center of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 117977, Russia
| | - Marina Belaya
- Department of Mathematics, Russian State University for the Humanities, GSP-3, Moscow, 125993, Russia
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
6
|
Li B, Abel SM. Membrane-mediated interactions between hinge-like particles. SOFT MATTER 2022; 18:2742-2749. [PMID: 35311882 DOI: 10.1039/d2sm00094f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adsorption of nanoparticles on a membrane can give rise to interactions between particles, mediated by membrane deformations, that play an important role in self-assembly and membrane remodeling. Previous theoretical and experimental research has focused on nanoparticles with fixed shapes, such as spherical, rod-like, and curved nanoparticles. Recently, hinge-like DNA origami nanostructures have been designed with tunable mechanical properties. Inspired by this, we investigate the equilibrium properties of hinge-like particles adsorbed on an elastic membrane using Monte Carlo and umbrella sampling simulations. The configurations of an isolated particle are influenced by competition between bending energies of the membrane and the particle, which can be controlled by changing adsorption strength and hinge stiffness. When two adsorbed particles interact, they effectively repel one another when the strength of adhesion to the membrane is weak. However, a strong adhesive interaction induces an effective attraction between the particles, which drives their aggregation. The configurations of the aggregate can be tuned by adjusting the hinge stiffness: tip-to-tip aggregation occurs for flexible hinges, whereas tip-to-middle aggregation also occurs for stiffer hinges. Our results highlight the potential for using the mechanical features of deformable nanoparticles to influence their self-assembly when the particles and membrane mutually influence one another.
Collapse
Affiliation(s)
- Bing Li
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, 37996, USA.
| |
Collapse
|
7
|
Kumar P, Theeyancheri L, Chakrabarti R. Chemically symmetric and asymmetric self-driven rigid dumbbells in a 2D polymer gel. SOFT MATTER 2022; 18:2663-2671. [PMID: 35311848 DOI: 10.1039/d1sm01820e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ computer simulations to unveil the translational and rotational dynamics of self-driven chemically symmetric and asymmetric rigid dumbbells in a two-dimensional polymer gel. Our results show that the activity or the self-propulsion always enhances the dynamics of the dumbbells. Making the self-propelled dumbbell chemically asymmetric leads to further enhancement in dynamics. Additionally, the direction of self-propulsion is a key factor for chemically asymmetric dumbbells, where self-propulsion towards the non-sticky half of the dumbbell results in faster translational and rotational dynamics compared to the case with the self-propulsion towards the sticky half of the dumbbell. Our analyses show that both the symmetric and asymmetric passive rigid dumbbells get trapped inside the mesh of the polymer gel, but the chemical asymmetry always facilitates the mesh to mesh motion of the dumbbell and it is even more pronounced when the dumbbell is self-propelled. This results in multiple peaks in the van Hove function with increasing self-propulsion. In a nutshell, we believe that our in silico study can guide researchers to design efficient artificial microswimmers possessing potential applications in site-specific delivery.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ligesh Theeyancheri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
8
|
Maity A, De SK, Bagchi D, Lee H, Chakraborty A. Mechanistic Pathway of Lipid Phase-Dependent Lipid Corona Formation on Phenylalanine-Functionalized Gold Nanoparticles: A Combined Experimental and Molecular Dynamics Simulation Study. J Phys Chem B 2022; 126:2241-2255. [PMID: 35286092 DOI: 10.1021/acs.jpcb.2c00356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, the underlying mechanism of formation of the lipid corona and its stability have begun to garner interest in the nanoscience community. However, until now, very little is known about the role of different properties of nanoparticles (NPs) (surface charge density, hydrophobicity, and size) in lipid corona formation. Apart from the physicochemical properties of NPs, the different properties of lipids remain elusive in lipid corona formation. In the present contribution, we have investigated the interaction of phenylalanine-functionalized gold NPs (Au-Phe NPs) with different zwitterionic lipid vesicles of different phase states (sol-gel and liquid crystalline at room temperature) as a function of lipid concentration. The main objective of the present work is to understand how the lipid phase affects lipid corona formation and lipid-induced aggregation in various media. Our results establish that the lipid phase state, area per lipid head group, and the buffer medium play important roles in lipid-induced aggregation. The lipid corona occurs for NPs at high lipid concentration, irrespective of the phase states and area per lipid head group of the lipid bilayer. Notably, the lipid corona also forms at a low concentration of lipid vesicles in the liquid crystalline phase (1,2-dioleoyl-sn-glycero-3-phosphocholine). The corona formation brings in remarkable stability to NPs against freeze-thaw cycles. Based on the stability, for the first time, we classify lipid corona as "hard lipid corona" and "soft lipid corona". This distinct classification will help to develop suitable nanomaterials for various biomedical applications.
Collapse
Affiliation(s)
- Avijit Maity
- Discipline of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Soumya Kanti De
- Discipline of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Debanjan Bagchi
- Discipline of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Anjan Chakraborty
- Discipline of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
9
|
Zuraw-Weston SE, Siavashpouri M, Moustaka ME, Gerling T, Dietz H, Fraden S, Ribbe AE, Dinsmore AD. Membrane Remodeling by DNA Origami Nanorods: Experiments Exploring the Parameter Space for Vesicle Remodeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6219-6231. [PMID: 33983740 DOI: 10.1021/acs.langmuir.1c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report an experimental study of long, slender nanorods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle concentration, adhesion strength, and membrane tension in determining the membrane morphology. We combined giant unilamellar vesicles with oppositely charged nanorods, carefully tuning the adhesion strength, membrane tension, and particle concentration. With increasing adhesion strength, the primary behaviors observed were membrane deformation, vesicle-vesicle adhesion, and vesicle rupture. These behaviors were observed in well-defined regions in the parameter space with sharp transitions between them. We observed the deformation of the membrane resulting in tubulation, textured surfaces, and small and large lipid-particle aggregates. These responses are robust and repeatable and provide a new physical understanding of the dependence on the shape, binding affinity, and particle concentration in membrane remodeling. The design principles derived from these experiments may lead to new bioinspired membrane-based materials.
Collapse
Affiliation(s)
- Sarah E Zuraw-Weston
- Department of Physics, University of Massachusetts Amherst, Hasbrouck Lab, 666 North Pleasant Street, Amherst, Massachusetts 01002, United States
| | - Mahsa Siavashpouri
- Department of Physics, Brandeis University, Abelson-Bass-Yalem, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Maria E Moustaka
- Department of Physics, Brandeis University, Abelson-Bass-Yalem, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Thomas Gerling
- Department of Physics, Technical University of Munich, James-Franck-Str., 1, Garching D-85748, Germany
| | - Hendrik Dietz
- Department of Physics, Technical University of Munich, James-Franck-Str., 1, Garching D-85748, Germany
| | - Seth Fraden
- Department of Physics, Brandeis University, Abelson-Bass-Yalem, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Alexander E Ribbe
- Department of Polymer Science and Engineering, Silvio O. Conte National Center for Polymer Research, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Anthony D Dinsmore
- Department of Physics, University of Massachusetts Amherst, Hasbrouck Lab, 666 North Pleasant Street, Amherst, Massachusetts 01002, United States
| |
Collapse
|
10
|
Kumari S, Ye F, Podgornik R. Ordering of adsorbed rigid rods mediated by the Boussinesq interaction on a soft substrate. J Chem Phys 2020; 153:144905. [PMID: 33086810 DOI: 10.1063/5.0022556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Orientational ordering driven by mechanical distortion of soft substrates plays a major role in material transformation processes such as elastocapillarity and surface anchoring. We present a theoretical model of the orientational response of anisotropic rods deposited onto a surface of a soft, elastic substrate of finite thickness. We show that anisotropic rods exhibit a continuous isotropic-nematic phase transition, driven by orientational interactions between surface deposited rods. This interaction is mediated by the deformation of the underlying elastic substrate and is quantified by the Boussinesq solution adapted to the case of slender, surface deposited rods. From the microscopic rod-rod interactions, we derive the appropriate Maier-Saupe mean-field description, which includes the Boussinesq elastic free energy contribution due to the substrate elasticity, derive the conditions for the existence of a continuous orientational ordering transition, and discuss the implication of results in the soft (bio)system context.
Collapse
Affiliation(s)
- Sunita Kumari
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Rudolf Podgornik
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
From Equilibrium Liquid Crystal Formation and Kinetic Arrest to Photonic Bandgap Films Using Suspensions of Cellulose Nanocrystals. CRYSTALS 2020. [DOI: 10.3390/cryst10030199] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lyotropic cholesteric liquid crystal phase developed by suspensions of cellulose nanocrystals (CNCs) has come increasingly into focus from numerous directions over the last few years. In part, this is because CNC suspensions are sustainably produced aqueous suspensions of a fully bio-derived nanomaterial with attractive properties. Equally important is the interesting and useful behavior exhibited by solid CNC films, created by drying a cholesteric-forming suspension. However, the pathway along which these films are realized, starting from a CNC suspension that may have low enough concentration to be fully isotropic, is more complex than often appreciated, leading to reproducibility problems and confusion. Addressing a broad audience of physicists, chemists, materials scientists and engineers, this Review focuses primarily on the physics and physical chemistry of CNC suspensions and the process of drying them. The ambition is to explain rather than to repeat, hence we spend more time than usual on the meanings and relevance of the key colloid and liquid crystal science concepts that must be mastered in order to understand the behavior of CNC suspensions, and we present some interesting analyses, arguments and data for the first time. We go through the development of cholesteric nuclei (tactoids) from the isotropic phase and their potential impact on the final dry films; the spontaneous CNC fractionation that takes place in the phase coexistence window; the kinetic arrest that sets in when the CNC mass fraction reaches ∼10 wt.%, preserving the cholesteric helical order until the film has dried; the ’coffee-ring effect’ active prior to kinetic arrest, often ruining the uniformity in the produced films; and the compression of the helix during the final water evaporation, giving rise to visible structural color in the films.
Collapse
|
12
|
Idema T, Kraft DJ. Interactions between model inclusions on closed lipid bilayer membranes. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Alliaume A, Reinbold C, Erhardt M, Beuve M, Hily JM, Lemaire O, Herrbach E. Virus preparations from the mixed-infected P70 Pinot Noir accession exhibit GLRaV-1/GVA ‘end-to-end’ particles. Arch Virol 2018; 163:3149-3154. [DOI: 10.1007/s00705-018-3995-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/01/2018] [Indexed: 11/29/2022]
|
14
|
Tesei G, Hellstrand E, Sanagavarapu K, Linse S, Sparr E, Vácha R, Lund M. Aggregate Size Dependence of Amyloid Adsorption onto Charged Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1266-1273. [PMID: 29284092 PMCID: PMC5828364 DOI: 10.1021/acs.langmuir.7b03155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Amyloid aggregates are associated with a range of human neurodegenerative disorders, and it has been shown that neurotoxicity is dependent on aggregate size. Combining molecular simulation with analytical theory, a predictive model is proposed for the adsorption of amyloid aggregates onto oppositely charged surfaces, where the interaction is governed by an interplay between electrostatic attraction and entropic repulsion. Predictions are experimentally validated against quartz crystal microbalance-dissipation experiments of amyloid beta peptides and fragmented fibrils in the presence of a supported lipid bilayer. Assuming amyloids as rigid, elongated particles, we observe nonmonotonic trends for the extent of adsorption with respect to aggregate size and preferential adsorption of smaller aggregates over larger ones. Our findings describe a general phenomenon with implications for stiff polyions and rodlike particles that are electrostatically attracted to a surface.
Collapse
Affiliation(s)
- Giulio Tesei
- Theoretical
Chemistry, Biophysical Chemistry, Biochemistry & Structural Biology,
and Physical Chemistry, Lund University, 221 00 Lund, Sweden
- E-mail: (G.T.)
| | - Erik Hellstrand
- Theoretical
Chemistry, Biophysical Chemistry, Biochemistry & Structural Biology,
and Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | - Kalyani Sanagavarapu
- Theoretical
Chemistry, Biophysical Chemistry, Biochemistry & Structural Biology,
and Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | - Sara Linse
- Theoretical
Chemistry, Biophysical Chemistry, Biochemistry & Structural Biology,
and Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | - Emma Sparr
- Theoretical
Chemistry, Biophysical Chemistry, Biochemistry & Structural Biology,
and Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | - Robert Vácha
- Central European Institute of Technology and Faculty of Science, Masaryk University, 625
00 Brno, Czech Republic
- E-mail: (R.V.)
| | - Mikael Lund
- Theoretical
Chemistry, Biophysical Chemistry, Biochemistry & Structural Biology,
and Physical Chemistry, Lund University, 221 00 Lund, Sweden
- E-mail: (M.L.)
| |
Collapse
|