1
|
Sevilla FJ, Valdés-Gómez A, Torres-Carbajal A. Anomalous diffusion of scaled Brownian tracers. Phys Rev E 2024; 110:014113. [PMID: 39160948 DOI: 10.1103/physreve.110.014113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/29/2024] [Indexed: 08/21/2024]
Abstract
A model for anomalous transport of tracer particles diffusing in complex media in two dimensions is proposed. The model takes into account the characteristics of persistent motion that an active bath transfers to the tracer; thus, the model proposed here extends active Brownian motion, for which the stochastic dynamics of the orientation of the propelling force is described by scaled Brownian motion (sBm), identified by time-dependent diffusivity of the form D_{β}∝t^{β-1}, β>0. If β≠1, sBm is highly nonstationary and suitable to describe such nonequilibrium dynamics induced by complex media. In this paper, we provide analytical calculations and computer simulations to show that genuine anomalous diffusion emerges in the long-time regime, with a time scaling of the mean-squared displacement t^{2-β}, while ballistic transport t^{2}, characteristic of persistent motion, is found in the short-time regime. We also analyze the time dependence of the kurtosis, and the intermediate scattering function of the position distribution, as well as the propulsion autocorrelation function, which defines the effective persistence time.
Collapse
|
2
|
Zaferani M, Abbaspourrad A. Biphasic Chemokinesis of Mammalian Sperm. PHYSICAL REVIEW LETTERS 2023; 130:248401. [PMID: 37390449 DOI: 10.1103/physrevlett.130.248401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 04/03/2023] [Indexed: 07/02/2023]
Abstract
The female reproductive tract (FRT) continuously modulates mammalian sperm motion by releasing various clues as sperm migrate toward the fertilization site. An existing gap in our understanding of sperm migration within the FRT is a quantitative picture of how sperm respond to and navigate the biochemical clues within the FRT. In this experimental study, we have found that in response to biochemical clues, mammalian sperm display two distinct chemokinetic behaviors which are dependent upon the rheological properties of the media: chiral, characterized by swimming in circles; and hyperactive, characterized by random reorientation events. We used minimal theoretical modeling, along with statistical characterization of the chiral and hyperactive trajectories, to show that the effective diffusivity of these motion phases decreases with increasing concentration of chemical stimulant. In the context of navigation this concentration dependent chemokinesis suggests that the chiral or hyperactive motion refines the sperm search area within different FRT functional regions. Further, the ability to switch between phases indicates that sperm may use various stochastic navigational strategies, such as run and tumble or intermittent search, within the fluctuating and spatially heterogeneous environment of the FRT.
Collapse
Affiliation(s)
- Meisam Zaferani
- Department of Food Science, Cornell University, Ithaca 14850, New York, USA
| | | |
Collapse
|
3
|
Di Trapani F, Franosch T, Caraglio M. Active Brownian particles in a circular disk with an absorbing boundary. Phys Rev E 2023; 107:064123. [PMID: 37464643 DOI: 10.1103/physreve.107.064123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/27/2023] [Indexed: 07/20/2023]
Abstract
We solve the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle exploring a circular region with an absorbing boundary. Using the passive Brownian particle as basis states and dealing with the activity as a perturbation, we provide a matrix representation of the Fokker-Planck operator and we express the propagator in terms of the perturbed eigenvalues and eigenfunctions. Alternatively, we show that the propagator can be expressed as a combination of the equilibrium eigenstates with weights depending only on time and on the initial conditions, and obeying exact iterative relations. Our solution allows also obtaining the survival probability and the first-passage time distribution. These latter quantities exhibit peculiarities induced by the nonequilibrium character of the dynamics; in particular, they display a strong dependence on the activity of the particle and, to a less extent, also on its rotational diffusivity.
Collapse
Affiliation(s)
- Francesco Di Trapani
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Zanovello L, Löffler RJG, Caraglio M, Franosch T, Hanczyc MM, Faccioli P. Survival strategies of artificial active agents. Sci Rep 2023; 13:5616. [PMID: 37024516 PMCID: PMC10079664 DOI: 10.1038/s41598-023-32267-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Artificial cells can be engineered to display dynamics sharing remarkable features in common with the survival behavior of living organisms. In particular, such active systems can respond to stimuli provided by the environment and undertake specific displacements to remain out of equilibrium, e.g. by moving towards regions with higher fuel concentration. In spite of the intense experimental activity aiming at investigating this fascinating behavior, a rigorous definition and characterization of such "survival strategies" from a statistical physics perspective is still missing. In this work, we take a first step in this direction by adapting and applying to active systems the theoretical framework of Transition Path Theory, which was originally introduced to investigate rare thermally activated transitions in passive systems. We perform experiments on camphor disks navigating Petri dishes and perform simulations in the paradigmatic active Brownian particle model to show how the notions of transition probability density and committor function provide the pivotal concepts to identify survival strategies, improve modeling, and obtain and validate experimentally testable predictions. The definition of survival in these artificial systems paves the way to move beyond simple observation and to formally characterize, design and predict complex life-like behaviors.
Collapse
Affiliation(s)
- Luigi Zanovello
- Physics Department, University of Trento, Via Sommarive 14, Povo, Trento, 38123, Italy
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, 6020, Innsbruck, Austria
| | - Richard J G Löffler
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Povo, Trento, 38123, Italy
| | - Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, 6020, Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, 6020, Innsbruck, Austria
| | - Martin M Hanczyc
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Povo, Trento, 38123, Italy.
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87106, USA.
| | - Pietro Faccioli
- Physics Department, University of Trento, Via Sommarive 14, Povo, Trento, 38123, Italy.
- Trento Institute for Fundamental Physics and Applications (INFN-TIFPA), Via Sommarive 14, Povo, Trento, 38123, Italy.
| |
Collapse
|
5
|
Menzel AM. Circular motion subject to external alignment under active driving: Nonlinear dynamics and the circle map. Phys Rev E 2022; 106:064603. [PMID: 36671092 DOI: 10.1103/physreve.106.064603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Hardly any real self-propelling or actively driven object is perfect. Thus, undisturbed motion will generally not follow straight lines but rather bent or circular trajectories. We here address self-propelled or actively driven objects that move in discrete steps and additionally tend to migrate towards a certain direction by discrete angular adjustment. Overreaction in the angular alignment is possible. This competition implies pronounced nonlinear dynamics including period doubling and chaotic behavior in a broad parameter regime. Such behavior directly affects the appearance of the trajectories. Furthermore, we address collective motion and effects of spatial self-concentration.
Collapse
Affiliation(s)
- Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
6
|
Chepizhko O, Franosch T. Resonant Diffusion of a Gravitactic Circle Swimmer. PHYSICAL REVIEW LETTERS 2022; 129:228003. [PMID: 36493425 DOI: 10.1103/physrevlett.129.228003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/16/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
We investigate the dynamics of a single chiral active particle subject to an external torque due to the presence of a gravitational field. Our computer simulations reveal an arbitrarily strong increase of the long-time diffusivity of the gravitactic agent when the external torque approaches the intrinsic angular drift. We provide analytic expressions for the mean-square displacement in terms of eigenfunctions and eigenvalues of the noisy-driven-pendulum problem. The pronounced maximum in the diffusivity is then rationalized by the vanishing of the lowest eigenvalues of the Fokker-Planck equation for the angular motion as the rotational diffusion decreases and the underlying classical bifurcation is approached. A simple harmonic-oscillator picture for the barrier-dominated motion provides a quantitative description for the onset of the resonance while its range of validity is determined by the crossover to a critical-fluctuation-dominated regime.
Collapse
Affiliation(s)
- Oleksandr Chepizhko
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
7
|
Bailey MR, Sprenger AR, Grillo F, Löwen H, Isa L. Fitting an active Brownian particle's mean-squared displacement with improved parameter estimation. Phys Rev E 2022; 106:L052602. [PMID: 36559483 DOI: 10.1103/physreve.106.l052602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022]
Abstract
The active Brownian particle (ABP) model is widely used to describe the dynamics of active matter systems, such as Janus microswimmers. In particular, the analytical expression for an ABP's mean-squared displacement (MSD) is useful as it provides a means to describe the essential physics of a self-propelled, spherical Brownian particle. However, the truncated or "short-time" form of the MSD equation is typically fitted, which can lead to significant problems in parameter estimation. Furthermore, heteroscedasticity and the often statistically dependent observations of an ABP's MSD lead to a situation where standard ordinary least-squares regression leads to biased estimates and unreliable confidence intervals. Instead, we propose here to revert to always fitting the full expression of an ABP's MSD at short timescales, using bootstrapping to construct confidence intervals of the fitted parameters. Additionally, after comparison between different fitting strategies, we propose to extract the physical parameters of an ABP using its mean logarithmic squared displacement. These steps improve the estimation of an ABP's physical properties and provide more reliable confidence intervals, which are critical in the context of a growing interest in the interactions of microswimmers with confining boundaries and the influence on their motion.
Collapse
Affiliation(s)
- Maximilian R Bailey
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.,Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Fabio Grillo
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
8
|
Gomez-Solano JR, Rodríguez RF, Salinas-Rodríguez E. Nonequilibrium dynamical structure factor of a dilute suspension of active particles in a viscoelastic fluid. Phys Rev E 2022; 106:054602. [PMID: 36559383 DOI: 10.1103/physreve.106.054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In this work we investigate the dynamics of the number-density fluctuations of a dilute suspension of active particles in a linear viscoelastic fluid. We propose a model for the frequency-dependent diffusion coefficient of the active particles which captures the effect of rotational diffusion on the persistence of their self-propelled motion and the viscoelasticity of the medium. Using fluctuating hydrodynamics, the linearized equations for the active suspension are derived, from which we calculate its dynamic structure factor and the corresponding intermediate scattering function. For a Maxwell-type rheological model, we find an intricate dependence of these functions on the parameters that characterize the viscoelasticity of the solvent and the activity of the particles, which can significantly deviate from those of an inert suspension of passive particles and of an active suspension in a Newtonian solvent. In particular, in some regions of the parameter space we uncover the emergence of oscillations in the intermediate scattering function at certain wave numbers which represent the hallmark of the nonequilibrium particle activity in the dynamical structure of the suspension and also encode the viscoelastic properties of the medium.
Collapse
Affiliation(s)
- Juan Ruben Gomez-Solano
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Código Postal 04510, Mexico
| | - Rosalío F Rodríguez
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Código Postal 04510, Mexico.,FENOMEC, Universidad Nacional Autónoma de México, Apdo. Postal 20-726, 01000 Ciudad de México, Mexico
| | - Elizabeth Salinas-Rodríguez
- Departamento I. P. H., Universidad Autónoma Metropolitana, Iztapalapa, Apdo. Postal 55-534, 09340 Ciudad de México, Mexico
| |
Collapse
|
9
|
Caraglio M, Franosch T. Analytic Solution of an Active Brownian Particle in a Harmonic Well. PHYSICAL REVIEW LETTERS 2022; 129:158001. [PMID: 36269953 DOI: 10.1103/physrevlett.129.158001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We provide an analytical solution for the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle trapped in an isotropic harmonic potential. Using the passive Brownian particle as basis states we show that the Fokker-Planck operator becomes lower diagonal, implying that the eigenvalues are unaffected by the activity. The propagator is then expressed as a combination of the equilibrium eigenstates with weights obeying exact iterative relations. We show that for the low-order correlation functions, such as the positional autocorrelation function, the recursion terminates at finite order in the Péclet number, allowing us to generate exact compact expressions and derive the velocity autocorrelation function and the time-dependent diffusion coefficient. The nonmonotonic behavior of latter quantities serves as a fingerprint of the nonequilibrium dynamics.
Collapse
Affiliation(s)
- Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Kalz E, Vuijk HD, Abdoli I, Sommer JU, Löwen H, Sharma A. Collisions Enhance Self-Diffusion in Odd-Diffusive Systems. PHYSICAL REVIEW LETTERS 2022; 129:090601. [PMID: 36083684 DOI: 10.1103/physrevlett.129.090601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
It is generally believed that collisions of particles reduce the self-diffusion coefficient. Here we show that in odd-diffusive systems, which are characterized by diffusion tensors with antisymmetric elements, collisions surprisingly can enhance the self-diffusion. In these systems, due to an inherent curving effect, the motion of particles is facilitated, instead of hindered by collisions leading to a mutual rolling effect. Using a geometric model, we analytically predict the enhancement of the self-diffusion coefficient with increasing density. This counterintuitive behavior is demonstrated in the archetypal odd-diffusive system of Brownian particles under Lorentz force. We validate our findings by many-body Brownian dynamics simulations in dilute systems.
Collapse
Affiliation(s)
- Erik Kalz
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Deutschland
- Technische Universität Dresden, Institut für Theoretische Physik, 01069 Dresden, Deutschland
| | - Hidde Derk Vuijk
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Deutschland
| | - Iman Abdoli
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Deutschland
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Deutschland
- Technische Universität Dresden, Institut für Theoretische Physik, 01069 Dresden, Deutschland
| | - Hartmut Löwen
- Heinrich Heine-Universität Düsseldorf, Institut für Theoretische Physik II: Weiche Materie, 40225 Düsseldorf, Deutschland
| | - Abhinav Sharma
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Deutschland
- Technische Universität Dresden, Institut für Theoretische Physik, 01069 Dresden, Deutschland
| |
Collapse
|
11
|
Thiffeault JL, Guo J. Anisotropic active Brownian particle with a fluctuating propulsion force. Phys Rev E 2022; 106:L012603. [PMID: 35974529 DOI: 10.1103/physreve.106.l012603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The active Brownian particle (ABP) model describes a swimmer, synthetic or living, whose direction of swimming is a Brownian motion. The swimming is due to a propulsion force, and the fluctuations are typically thermal in origin. We present a two-dimensional model where the fluctuations arise from nonthermal noise in a propelling force acting at a single point, such as that due to a flagellum. We take the overdamped limit and find several modifications to the traditional ABP model. Since the fluctuating force causes a fluctuating torque, the diffusion tensor describing the process has a coupling between translational and rotational degrees of freedom. An anisotropic particle also exhibits a mass-dependent noise-induced drift, which does not disappear in the overdamped limit. We show that these effects have measurable consequences for the long-time diffusivity of active particles, in particular adding a contribution that is independent of where the force acts.
Collapse
Affiliation(s)
- Jean-Luc Thiffeault
- Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jiajia Guo
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
12
|
Sprenger AR, Bair C, Löwen H. Active Brownian motion with memory delay induced by a viscoelastic medium. Phys Rev E 2022; 105:044610. [PMID: 35590653 DOI: 10.1103/physreve.105.044610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 01/17/2023]
Abstract
By now active Brownian motion is a well-established model to describe the motion of mesoscopic self-propelled particles in a Newtonian fluid. On the basis of the generalized Langevin equation, we present an analytic framework for active Brownian motion with memory delay assuming time-dependent friction kernels for both translational and orientational degrees of freedom to account for the time-delayed response of a viscoelastic medium. Analytical results are obtained for the orientational correlation function, mean displacement, and mean-square displacement which we evaluate in particular for a Maxwell fluid characterized by a kernel which decays exponentially in time. Further, we identify a memory-induced delay between the effective self-propulsion force and the particle orientation which we quantify in terms of a special dynamical correlation function. In principle, our predictions can be verified for an active colloidal particle in various viscoelastic environments such as a polymer solution.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Christian Bair
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Shee A, Chaudhuri D. Self-propulsion with speed and orientation fluctuation: Exact computation of moments and dynamical bistabilities in displacement. Phys Rev E 2022; 105:054148. [PMID: 35706212 DOI: 10.1103/physreve.105.054148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
We consider the influence of active speed fluctuations on the dynamics of a d-dimensional active Brownian particle performing a persistent stochastic motion. The speed fluctuation brings about a dynamical anisotropy even in the absence of shape anisotropy. We use the Laplace transform of the Fokker-Planck equation to obtain exact expressions for time-dependent dynamical moments. Our results agree with direct numerical simulations and show several dynamical crossovers determined by the activity, persistence, and speed fluctuation. The dynamical anisotropy leads to a subdiffusive scaling in the parallel component of displacement fluctuation at intermediate times. The kurtosis remains positive at short times determined by the speed fluctuation, crossing over to a negative minimum at intermediate times governed by the persistence before vanishing asymptotically. The probability distribution of particle displacement obtained from numerical simulations in two dimensions shows two crossovers between compact and extended trajectories via two bimodal distributions at intervening times. While the speed fluctuation dominates the first crossover, the second crossover is controlled by persistence like in the wormlike chain model of semiflexible polymers.
Collapse
Affiliation(s)
- Amir Shee
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India and Homi Bhaba National Institute, Anushaktinagar, Mumbai 400094, India
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India and Homi Bhaba National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
14
|
Caprini L, Sprenger AR, Löwen H, Wittmann R. The parental active model: A unifying stochastic description of self-propulsion. J Chem Phys 2022; 156:071102. [DOI: 10.1063/5.0084213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander R. Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Ma Z, Ni R. Dynamical clustering interrupts motility-induced phase separation in chiral active Brownian particles. J Chem Phys 2022; 156:021102. [PMID: 35032980 DOI: 10.1063/5.0077389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the most intriguing phenomena in active matter has been the gas-liquid-like motility-induced phase separation (MIPS) observed in repulsive active particles. However, experimentally, no particle can be a perfect sphere, and the asymmetric shape, mass distribution, or catalysis coating can induce an active torque on the particle, which makes it a chiral active particle. Here, using computer simulations and dynamic mean-field theory, we demonstrate that the large enough torque of circle active Brownian particles in two dimensions generates a dynamical clustering state interrupting the conventional MIPS. Multiple clusters arise from the combination of the conventional MIPS cohesion, and the circulating current caused disintegration. The nonvanishing current in non-equilibrium steady states microscopically originates from the motility "relieved" by automatic rotation, which breaks the detailed balance at the continuum level. This suggests that no equilibrium-like phase separation theory can be constructed for chiral active colloids even with tiny active torque, in which no visible collective motion exists. This mechanism also sheds light on the understanding of dynamic clusters observed in a variety of active matter systems.
Collapse
Affiliation(s)
- Zhan Ma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Ran Ni
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
16
|
Mayer DB, Sarmiento-Gómez E, Escobedo-Sánchez MA, Segovia-Gutiérrez JP, Kurzthaler C, Egelhaaf SU, Franosch T. Two-dimensional Brownian motion of anisotropic dimers. Phys Rev E 2021; 104:014605. [PMID: 34412330 DOI: 10.1103/physreve.104.014605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 11/07/2022]
Abstract
We study the two-dimensional motion of colloidal dimers by single-particle tracking and compare the experimental observations obtained by bright-field microscopy to theoretical predictions for anisotropic diffusion. The comparison is based on the mean-square displacements in the laboratory and particle frame as well as generalizations of the self-intermediate scattering functions, which provide insights into the rotational dynamics of the dimer. The diffusional anisotropy leads to a measurable translational-rotational coupling that becomes most prominent by aligning the coordinate system with the initial orientation of the particles. In particular, we find a splitting of the time-dependent diffusion coefficients parallel and perpendicular to the long axis of the dimer which decays over the orientational relaxation time. Deviations of the self-intermediate scattering functions from pure exponential relaxation are small but can be resolved experimentally. The theoretical predictions and experimental results agree quantitatively.
Collapse
Affiliation(s)
- Daniel B Mayer
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25/2, A-6020 Innsbruck, Austria
| | - Erick Sarmiento-Gómez
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.,División de Ciencias e Ingenierias, Departamento de Ingenieria Física, Universidad de Guanajuato, León, Mexico
| | - Manuel A Escobedo-Sánchez
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Juan Pablo Segovia-Gutiérrez
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Christina Kurzthaler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25/2, A-6020 Innsbruck, Austria
| |
Collapse
|
17
|
Sprenger AR, Jahanshahi S, Ivlev AV, Löwen H. Time-dependent inertia of self-propelled particles: The Langevin rocket. Phys Rev E 2021; 103:042601. [PMID: 34005997 DOI: 10.1103/physreve.103.042601] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Many self-propelled objects are large enough to exhibit inertial effects but still suffer from environmental fluctuations. The corresponding basic equations of motion are governed by active Langevin dynamics, which involve inertia, friction, and stochastic noise for both the translational and orientational degrees of freedom coupled via the self-propulsion along the particle orientation. In this paper, we generalize the active Langevin model to time-dependent parameters and explicitly discuss the effect of time-dependent inertia for achiral and chiral particles. Realizations of this situation are manifold, ranging from minirockets (which are self-propelled by burning their own mass), to dust particles in plasma (which lose mass by evaporating material), to walkers with expiring activity. Here we present analytical solutions for several dynamical correlation functions, such as mean-square displacement and orientational and velocity autocorrelation functions. If the parameters exhibit a slow power law in time, we obtain anomalous superdiffusion with a nontrivial dynamical exponent. Finally, we constitute the "Langevin rocket" model by including orientational fluctuations in the traditional Tsiolkovsky rocket equation. We calculate the mean reach of the Langevin rocket and discuss different mass ejection strategies to maximize it. Our results can be tested in experiments on macroscopic robotic or living particles or in self-propelled mesoscopic objects moving in media of low viscosity, such as complex plasma.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Soudeh Jahanshahi
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Alexei V Ivlev
- Max-Planck-Institut für Extraterrestrische Physik, 85748 Garching, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Huang ZF, Menzel AM, Löwen H. Dynamical Crystallites of Active Chiral Particles. PHYSICAL REVIEW LETTERS 2020; 125:218002. [PMID: 33274968 DOI: 10.1103/physrevlett.125.218002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
One of the intrinsic characteristics of far-from-equilibrium systems is the nonrelaxational nature of the system dynamics, which leads to novel properties that cannot be understood and described by conventional pathways based on thermodynamic potentials. Of particular interest are the formation and evolution of ordered patterns composed of active particles that exhibit collective behavior. Here we examine such a type of nonpotential active system, focusing on effects of coupling and competition between chiral particle self-propulsion and self-spinning. It leads to the transition between three bulk dynamical regimes dominated by collective translative motion, spinning-induced structural arrest, and dynamical frustration. In addition, a persistently dynamical state of self-rotating crystallites is identified as a result of a localized-delocalized transition induced by the crystal-melt interface. The mechanism for the breaking of localized bulk states can also be utilized to achieve self-shearing or self-flow of active crystalline layers.
Collapse
Affiliation(s)
- Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| | - Andreas M Menzel
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Sprenger AR, Fernandez-Rodriguez MA, Alvarez L, Isa L, Wittkowski R, Löwen H. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7066-7073. [PMID: 31975603 DOI: 10.1021/acs.langmuir.9b03617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combining experiments on active colloids, whose propulsion velocity can be controlled via a feedback loop, and the theory of active Brownian motion, we explore the dynamics of an overdamped active particle with a motility that depends explicitly on the particle orientation. In this case, the active particle moves faster when oriented along one direction and slower when oriented along another, leading to anisotropic translational dynamics which is coupled to the particle's rotational diffusion. We propose a basic model of active Brownian motion for orientation-dependent motility. On the basis of this model, we obtain analytical results for the mean trajectories, averaged over the Brownian noise for various initial configurations, and for the mean-square displacements including their non-Gaussian behavior. The theoretical results are found to be in good agreement with the experimental data. Orientation-dependent motility is found to induce significant anisotropy in the particle displacement, mean-square displacement, and non-Gaussian parameter even in the long-time limit. Our findings establish a methodology for engineering complex anisotropic motilities of active Brownian particles, with a potential impact in the study of the swimming behavior of microorganisms subjected to anisotropic driving fields.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | - Laura Alvarez
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Dulaney AR, Brady JF. Waves in active matter: The transition from ballistic to diffusive behavior. Phys Rev E 2020; 101:052609. [PMID: 32575299 DOI: 10.1103/physreve.101.052609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/23/2020] [Indexed: 01/19/2023]
Abstract
We highlight the unique wavelike character observed in the relaxation dynamics of active systems via a Smoluchowski based theoretical framework and Brownian dynamic simulations. Persistent swimming motion results in wavelike dynamics until the advective swim displacements become sufficiently uncorrelated, at which point the motion becomes a random walk process characterized by a swim diffusivity, D^{swim}=U_{0}^{2}τ_{R}/[d(d-1)], dependent on the speed of swimming U_{0}, reorientation time τ_{R}, and reorientation dimension d. This change in behavior is described by a telegraph equation, which governs the transition from ballistic wavelike motion to long-time diffusive motion. We study the relaxation of active Brownian particles from an instantaneous source, and provide an explanation for the nonmonotonicity observed in the intermediate scattering function. Using our simple kinetic model we provide the density distribution for the diffusion of active particles released from a line source as a function of time, position, and the ratio of the activity to thermal energy. We extend our analysis to include the effects of an external field on particle spreading to further understand how reorientation events in the active force vector affect relaxation. The strength of the applied external field is shown to be inversely proportional to the decay of the wavelike structure. Our theoretical description for the evolution of the number density agrees with Brownian dynamic simulation data.
Collapse
Affiliation(s)
- A R Dulaney
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - J F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
21
|
Shee A, Dhar A, Chaudhuri D. Active Brownian particles: mapping to equilibrium polymers and exact computation of moments. SOFT MATTER 2020; 16:4776-4787. [PMID: 32409794 DOI: 10.1039/d0sm00367k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is well known that the path probabilities of Brownian motion correspond to the equilibrium configurational probabilities of flexible Gaussian polymers, while those of active Brownian motion correspond to in-extensible semiflexible polymers. Here we investigate the properties of the equilibrium polymer that corresponds to the trajectories of particles acted on simultaneously by both Brownian and active noise. Through this mapping we can see interesting crossovers in the mechanical properties of the polymer with changing contour length. The polymer end-to-end distribution exhibits Gaussian behaviour for short lengths, which changes to the form of semiflexible filaments at intermediate lengths, to finally go back to a Gaussian form for long contour lengths. By performing a Laplace transform of the governing Fokker-Planck equation of the active Brownian particle, we discuss a direct method to derive exact expressions for all the moments of the relevant dynamical variables, in arbitrary dimensions. These are verified via numerical simulations and used to describe interesting qualitative features such as, for example, dynamical crossovers. Finally we discuss the kurtosis of the ABP's position, which we compute exactly, and show that it can be used to differentiate between active Brownian particles and the active Ornstein-Uhlenbeck process.
Collapse
Affiliation(s)
- Amir Shee
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
| | | | | |
Collapse
|
22
|
Abstract
The diffusion in two dimensions of noninteracting active particles that follow an arbitrary motility pattern is considered for analysis. A Fokker-Planck-like equation is generalized to take into account an arbitrary distribution of scattered angles of the swimming direction, which encompasses the pattern of active motion of particles that move at constant speed. An exact analytical expression for the marginal probability density of finding a particle on a given position at a given instant, independently of its direction of motion, is provided, and a connection with a generalized diffusion equation is unveiled. Exact analytical expressions for the time dependence of the mean-square displacement and of the kurtosis of the distribution of the particle positions are presented. The analysis is focused in the intermediate-time regime, where the effects of the specific pattern of active motion are conspicuous. For this, it is shown that only the expectation value of the first two harmonics of the scattering angle of the direction of motion are needed. The effects of persistence and of circular motion are discussed for different families of distributions of the scattered direction of motion.
Collapse
Affiliation(s)
- Francisco J Sevilla
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, Ciudad de México, México
| |
Collapse
|
23
|
Löwen H. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion. J Chem Phys 2020; 152:040901. [DOI: 10.1063/1.5134455] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Löwen H. Active particles in noninertial frames: How to self-propel on a carousel. Phys Rev E 2019; 99:062608. [PMID: 31330628 DOI: 10.1103/physreve.99.062608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 06/10/2023]
Abstract
Typically the motion of self-propelled active particles is described in a quiescent environment establishing an inertial frame of reference. Here we assume that friction, self-propulsion, and fluctuations occur relative to a noninertial frame and thereby the active Brownian motion model is generalized to noninertial frames. First, analytical solutions are presented for the overdamped case, both for linear swimmers and for circle swimmers. For a frame rotating with constant angular velocity ("carousel"), the resulting noise-free trajectories in the static laboratory frame are trochoids if these are circles in the rotating frame. For systems governed by inertia, such as vibrated granulates or active complex plasmas, centrifugal and Coriolis forces become relevant. For both linear and circling self-propulsion, these forces lead to out-spiraling trajectories which for long times approach a spira mirabilis. This implies that a self-propelled particle will typically leave a rotating carousel. A navigation strategy is proposed to avoid this expulsion, by adjusting the self-propulsion direction at will. For a particle, initially quiescent in the rotating frame, it is shown that this strategy only works if the initial distance to the rotation center is smaller than a critical radius R_{c} which scales with the self-propulsion velocity. Possible experiments to verify the theoretical predictions are discussed.
Collapse
Affiliation(s)
- Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Chepizhko O, Franosch T. Ideal circle microswimmers in crowded media. SOFT MATTER 2019; 15:452-461. [PMID: 30574653 PMCID: PMC6336149 DOI: 10.1039/c8sm02030b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/08/2018] [Indexed: 05/26/2023]
Abstract
Microswimmers are exposed in nature to crowded environments and their transport properties depend in a subtle way on the interaction with obstacles. Here, we investigate a model for a single ideal circle swimmer exploring a two-dimensional disordered array of impenetrable obstacles. The microswimmer moves on circular orbits in the freely accessible space and follows the surface of an obstacle for a certain time upon collision. Depending on the obstacle density and the radius of the circular orbits, the microswimmer displays either long-range transport or is localized in a finite region. We show that there are transitions from two localized states to a diffusive state each driven by an underlying static percolation transition. We determine the non-equilibrium state diagram and calculate the mean-square displacements and diffusivities by computer simulations. Close to the transition lines transport becomes subdiffusive which is rationalized as a dynamic critical phenomenon.
Collapse
Affiliation(s)
- Oleksandr Chepizhko
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| |
Collapse
|
26
|
Scholz C, Jahanshahi S, Ldov A, Löwen H. Inertial delay of self-propelled particles. Nat Commun 2018; 9:5156. [PMID: 30514839 PMCID: PMC6279816 DOI: 10.1038/s41467-018-07596-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022] Open
Abstract
The motion of self-propelled massive particles through a gaseous medium is dominated by inertial effects. Examples include vibrated granulates, activated complex plasmas and flying insects. However, inertia is usually neglected in standard models. Here, we experimentally demonstrate the significance of inertia on macroscopic self-propelled particles. We observe a distinct inertial delay between orientation and velocity of particles, originating from the finite relaxation times in the system. This effect is fully explained by an underdamped generalisation of the Langevin model of active Brownian motion. In stark contrast to passive systems, the inertial delay profoundly influences the long-time dynamics and enables new fundamental strategies for controlling self-propulsion in active matter.
Collapse
Affiliation(s)
- Christian Scholz
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| | - Soudeh Jahanshahi
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Anton Ldov
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
27
|
Liao GJ, Klapp SHL. Clustering and phase separation of circle swimmers dispersed in a monolayer. SOFT MATTER 2018; 14:7873-7882. [PMID: 30221296 DOI: 10.1039/c8sm01366g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We perform Brownian dynamics simulations in two dimensions to study the collective behavior of circle swimmers, which are driven by both, an (effective) translational and rotational self-propulsion, and interact via steric repulsion. We find that active rotation generally opposes motility-induced clustering and phase separation, as demonstrated by a narrowing of the coexistence region upon increase of the propulsion angular velocity. Moreover, although the particles are intrinsically assigned to rotate counterclockwise, a novel state of clockwise vortices emerges at an optimal value of the effective propulsion torque. We propose a simple gear-like model to capture the underlying mechanism of the clockwise vortices.
Collapse
Affiliation(s)
- Guo-Jun Liao
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany.
| | | |
Collapse
|
28
|
Kurzthaler C. Elastic behavior of a semiflexible polymer in 3D subject to compression and stretching forces. SOFT MATTER 2018; 14:7634-7644. [PMID: 30168558 DOI: 10.1039/c8sm01403e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We elucidate the elastic behavior of a wormlike chain in 3D under compression and provide exact solutions for the experimentally accessible force-extension relation in terms of generalized spheroidal wave functions. In striking contrast to the classical Euler buckling instability, the force-extension relation of a clamped semiflexible polymer exhibits a smooth crossover from an almost stretched to a buckled configuration. In particular, the associated susceptibility, which measures the strength of the response of the polymer to the applied force, displays a prominent peak in the vicinity of the critical Euler buckling force. For increasing persistence length, the force-extension relation and the susceptibility of semiflexible polymers approach the behavior of a classical rod, whereas thermal fluctuations permit more flexible polymers to resist the applied force. Furthermore, we find that semiflexible polymers confined to 2D can oppose the applied force more strongly than in 3D.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| |
Collapse
|
29
|
Kurzthaler C, Devailly C, Arlt J, Franosch T, Poon WCK, Martinez VA, Brown AT. Probing the Spatiotemporal Dynamics of Catalytic Janus Particles with Single-Particle Tracking and Differential Dynamic Microscopy. PHYSICAL REVIEW LETTERS 2018; 121:078001. [PMID: 30169062 DOI: 10.1103/physrevlett.121.078001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/01/2018] [Indexed: 05/25/2023]
Abstract
We demonstrate differential dynamic microscopy and particle tracking for the characterization of the spatiotemporal behavior of active Janus colloids in terms of the intermediate scattering function (ISF). We provide an analytical solution for the ISF of the paradigmatic active Brownian particle model and find striking agreement with experimental results from the smallest length scales, where translational diffusion and self-propulsion dominate, up to the largest ones, which probe effective diffusion due to rotational Brownian motion. At intermediate length scales, characteristic oscillations resolve the crossover between directed motion to orientational relaxation and allow us to discriminate active Brownian motion from other reorientation processes, e.g., run-and-tumble motion. A direct comparison to theoretical predictions reliably yields the rotational and translational diffusion coefficients of the particles, the mean and width of their speed distribution, and the temporal evolution of these parameters.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Clémence Devailly
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Jochen Arlt
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Wilson C K Poon
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Vincent A Martinez
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Aidan T Brown
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
30
|
Kurzthaler C, Franosch T. Bimodal probability density characterizes the elastic behavior of a semiflexible polymer in 2D under compression. SOFT MATTER 2018; 14:2682-2693. [PMID: 29564466 DOI: 10.1039/c8sm00366a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We explore the elastic behavior of a wormlike chain under compression in terms of exact solutions for the associated probability densities. Strikingly, the probability density for the end-to-end distance projected along the applied force exhibits a bimodal shape in the vicinity of the critical Euler buckling force of an elastic rod, reminiscent of the smeared discontinuous phase transition of a finite system. These two modes reflect the almost stretched and the S-shaped configuration of a clamped polymer induced by the compression. Moreover, we find a bimodal shape of the probability density for the transverse fluctuations of the free end of a cantilevered polymer as fingerprint of its semiflexibility. In contrast to clamped polymers, free polymers display a circularly symmetric probability density and their distributions are identical for compression and stretching forces.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| |
Collapse
|