1
|
Koo J, Hyeong J, Jang J, Wi Y, Ko H, Rim M, Lim S, Na S, Choi Y, Jeong K. Photochemically and Thermally Programmed Optical Multi-States from a Single Diacetylene-Functionalized Cyanostilbene Luminogen. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307791. [PMID: 38225753 PMCID: PMC10953535 DOI: 10.1002/advs.202307791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Indexed: 01/17/2024]
Abstract
To develop advanced optical systems, many scientists have endeavored to create smart optical materials which can tune their photophysical properties by changing molecular states. However, optical multi-states are obtained usually by mixing many dyes or stacking multi-layered structures. Here, multiple molecular states are tried to be generated with a single dye. In order to achieve the goal, a diacetylene-functionalized cyanostilbene luminogen (DACSM) is newly synthesized by covalently connecting diacetylene and cyanostilbene molecular functions. Photochemical reaction of cyanostilbene and topochemical polymerization of diacetylene can change the molecular state of DACSM. By thermal stimulations and the photochemical reaction, the conformation of polymerized DACSM is further tuned. The synergetic molecular cooperation of cyanostilbene and diacetylene generates multiple molecular states of DACSM. Utilizing the optical multi-states achieved from the newly developed DACSM, switchable optical patterns and smart secret codes are successfully demonstrated.
Collapse
Affiliation(s)
- Jahyeon Koo
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Jaeseok Hyeong
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Junhwa Jang
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Youngjae Wi
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Hyeyoon Ko
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Minwoo Rim
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Seok‐In Lim
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Seok‐In Na
- Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐KoreaJeonbuk National UniversityJeonju54896Republic of Korea
| | - Yu‐Jin Choi
- Materials DepartmentUniversity of CaliforniaSanta BarbaraCA93106USA
| | - Kwang‐Un Jeong
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| |
Collapse
|
2
|
Hossain MM, Olamilekan AI, Jeong HO, Lim H, Kim YK, Cho H, Jeong HD, Islam MA, Goh M, You NH, Kim MJ, Choi SQ, Hahn JR, Yeo H, Jang SG. Diacetylene-Containing Dual-Functional Liquid Crystal Epoxy Resin: Strategic Phase Control for Topochemical Polymerization of Diacetylenes and Thermal Conductivity Enhancement. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Md. Monir Hossain
- Functional Composite Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju, Jeonbuk 55324, Republic of Korea
- Department of Chemistry, Department of Bioactive Material Sciences, and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Arinola Isa Olamilekan
- Department of Science Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Oh Jeong
- Functional Composite Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju, Jeonbuk 55324, Republic of Korea
| | - Hongjin Lim
- Functional Composite Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju, Jeonbuk 55324, Republic of Korea
| | - Young-Kyeong Kim
- Functional Composite Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju, Jeonbuk 55324, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyunjin Cho
- Functional Composite Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju, Jeonbuk 55324, Republic of Korea
| | - Hyeon Dam Jeong
- Functional Composite Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju, Jeonbuk 55324, Republic of Korea
| | - Md. Akherul Islam
- Department of Chemistry, Department of Bioactive Material Sciences, and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Munju Goh
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nam-Ho You
- Carbon Composite Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju, Jeonbuk 55324, Republic of Korea
| | - Myung Jong Kim
- Department of Chemistry, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae Ryang Hahn
- Department of Chemistry, Department of Bioactive Material Sciences, and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Hyeonuk Yeo
- Department of Science Education, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Chemistry Education and Department of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Se Gyu Jang
- Functional Composite Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju, Jeonbuk 55324, Republic of Korea
| |
Collapse
|
3
|
Wang G, Wang D, Chen A, Okafor IS, Samankumara LP. Design and Synthesis of α-Anomeric Diacetylene-Containing Glycosides as Photopolymerizable Molecular Gelators. ACS OMEGA 2022; 7:11330-11342. [PMID: 35415357 PMCID: PMC8992281 DOI: 10.1021/acsomega.2c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Glycolipids with diacetylene functional groups are fascinating compounds with many practical uses. Among these, diacetylene-containing gelators are especially important because they can form photopolymerizable gels, which are useful stimuli-responsive materials. Inspired by the unique properties of diacetylene-containing gelators and to understand the structural influences especially the location of the diacetylene functional groups on the self-assembling properties, a series of 15 novel N-acetyl-d-glucosamine derivatives with the diacetylene functional group introduced at the anomeric position were designed and synthesized. The diacetylene function is attached to the sugar through α-glycosylation with the distance from the anomeric oxygen being varied from one, two, and three methylene groups, and the other side contains hydroxyl, carboxyl, phenyl, and alkyl substituents. Remarkably, all compounds can form self-assembled gels in one or more selected solvents. A majority of these synthesized diacetylene glycosides are effective gelators for ethanol/water (v/v 1:1), dimethyl sulfoxide/water (v/v 1:1), and toluene, and one compound also formed a hydrogel at 1.0 wt %. Typically, these glycosides form gels that are photopolymerizable to afford red-colored gels. Scanning electronic microscopy indicated that the gelators formed helices, fibers, and planar sheet-like morphologies. The chemical structures of the derivatives affected their gelation properties and responses to UV treatment. The carboxylic acid-functionalized derivative 17 was able to immobilize basic solutions and form transparent gels. We expect that these diacetylene glycosides especially the hydroxyl and carboxylic acid derivatives will be useful as stimuli-responsive glycolipids for biomedical research.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Dan Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Ifeanyi S. Okafor
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Lalith Palitha Samankumara
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
4
|
Hall AV, Musa OM, Hood DK, Apperley DC, Yufit DS, Steed JW. Alkali Metal Salts of 10,12-Pentacosadiynoic Acid and Their Dosimetry Applications. CRYSTAL GROWTH & DESIGN 2021. [PMID: 34054354 DOI: 10.1021/acs.cgd.1c00300] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wide-dose-range 2D radiochromic films for radiotherapy, such as GAFchromic EBT, are based on the lithium salt of 10,12-pentacosadiynoic acid (Li-PCDA) as the photosensitive component. We show that there are two solid forms of Li-PCDA-a monohydrated form A and an anhydrous form B. The form used in commercial GAFchromic films is form A due to its short needle-shaped crystals, which provide favorable coating properties. Form B provides an enhanced photoresponse compared to that of form A, but adopts a long needle crystal morphology, which is difficult to process. The two forms were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, CP-MAS 13C solid-state NMR spectroscopy, and thermogravimetric analysis. In sum, these data suggest a chelating bridging bidentate coordination mode for the lithium ions. The sodium salt of PCDA (Na-PCDA) is also reported, which is an ionic cocrystal with a formula of Na+PCDA-·3PCDA. The PCDA and PCDA- ligands display monodentate and bridging bidentate coordination to the sodium ion in contrast to the coordination sphere of the Li-PCDA forms. In contrast to its lithium analogues, Na-PCDA is photostable.
Collapse
Affiliation(s)
- Amy V Hall
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K
| | - Osama M Musa
- Ashland LLC, 1005 Route 202/206, Bridgewater, New Jersey 08807, United States
| | - David K Hood
- Ashland LLC, 1005 Route 202/206, Bridgewater, New Jersey 08807, United States
| | - David C Apperley
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K
| | - Dmitry S Yufit
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K
| | - Jonathan W Steed
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K
| |
Collapse
|
5
|
Affiliation(s)
- Shivender Yadav
- Department of Organic ChemistryIndian Institute of Science Bangalore 560 012 India
| | | | | |
Collapse
|
6
|
Weston M, Tjandra AD, Chandrawati R. Tuning chromatic response, sensitivity, and specificity of polydiacetylene-based sensors. Polym Chem 2020. [DOI: 10.1039/c9py00949c] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we provide an overview of six major techniques to tune the sensitivity and specificity of polydiacetylene-based sensors.
Collapse
Affiliation(s)
- Max Weston
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN)
- The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| | - Angie Davina Tjandra
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN)
- The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN)
- The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| |
Collapse
|
7
|
Affiliation(s)
- Kambiz Sadeghi
- Department of Packaging, Yonsei University, Wonju, Gangwon-do, South Korea
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, Arizona, USA
| | - Jongchul Seo
- Department of Packaging, Yonsei University, Wonju, Gangwon-do, South Korea
| |
Collapse
|
8
|
Koo J, Lim SI, Lee SH, Kim JS, Yu YT, Lee CR, Kim DY, Jeong KU. Polarized Light Emission from Uniaxially Oriented and Polymer-Stabilized AIE Luminogen Thin Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | | | | | - Dae-Yoon Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
9
|
Park M, Kang DG, Yoon WJ, Choi YJ, Koo J, Lim SI, Jeong KU. Programmed Hierarchical Hybrid Nanostructures from Fullerene-Dendrons and Pyrene-Dendrons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803291. [PMID: 30303613 DOI: 10.1002/smll.201803291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/14/2018] [Indexed: 06/08/2023]
Abstract
The construction of fullerene (C60 ) hierarchical nanostructures with the help of amphiphilic molecules remains a challenging task in nanoscience and nanotechnology. Utilizing the host-guest complex concept, sub-10 nm layered superstructures are constructed from a monofunctionalized C60 dendron (C60 D, guest) and tweezer-like pyrene dendron (PD, host). Since C60 D and PD are asymmetric shape amphiphiles having liquid crystal (LC) dendrons, both C60 D and PD construct head-to-head bilayer superstructures by themselves. From fluorescence titration experiments, it is realized that the host-guest complex shows 1:1 stoichiometric binding with a binding constant (Ksv = 2.45 × 105 m-1 ). Based on the morphological observations and scattering analyses, it is found that buckle-like asymmetric building blocks (C60 D·PD) are self-assembled by the host-guest complex and construct multilayer hybrid nanostructures. The hierarchical hybrid nanostructures consist of the self-assembled C60 D·PD bilayer with a 2D C60 ·P nanoarray sandwiched between LC dendrons. This advanced strategy is expected to be a practicable and rational guideline for the fabrication of programmed hierarchical hybrid nanostructures.
Collapse
Affiliation(s)
- Minwook Park
- BK21 Plus Haptic Polymer Composite Research Team and Department of Polymer-Nano Science and Technology Chonbuk National University, Jeonju, 54896, South Korea
| | - Dong-Gue Kang
- BK21 Plus Haptic Polymer Composite Research Team and Department of Polymer-Nano Science and Technology Chonbuk National University, Jeonju, 54896, South Korea
| | - Won-Jin Yoon
- BK21 Plus Haptic Polymer Composite Research Team and Department of Polymer-Nano Science and Technology Chonbuk National University, Jeonju, 54896, South Korea
| | - Yu-Jin Choi
- BK21 Plus Haptic Polymer Composite Research Team and Department of Polymer-Nano Science and Technology Chonbuk National University, Jeonju, 54896, South Korea
| | - Jahyeon Koo
- BK21 Plus Haptic Polymer Composite Research Team and Department of Polymer-Nano Science and Technology Chonbuk National University, Jeonju, 54896, South Korea
| | - Seok-In Lim
- BK21 Plus Haptic Polymer Composite Research Team and Department of Polymer-Nano Science and Technology Chonbuk National University, Jeonju, 54896, South Korea
| | - Kwang-Un Jeong
- BK21 Plus Haptic Polymer Composite Research Team and Department of Polymer-Nano Science and Technology Chonbuk National University, Jeonju, 54896, South Korea
| |
Collapse
|
10
|
|
11
|
Kang DG, Ko H, Koo J, Lim SI, Kim JS, Yu YT, Lee CR, Kim N, Jeong KU. Anisotropic Thermal Interface Materials: Directional Heat Transfer in Uniaxially Oriented Liquid Crystal Networks. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35557-35562. [PMID: 30088761 DOI: 10.1021/acsami.8b09982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For the development of anisotropic thermal interface materials (TIMs), a rod-shaped reactive monomer PNP-6MA is newly designed and successfully synthesized. PNP-6MA reveals a smectic A (SmA) mesophase between crystalline (K) and isotropic (I) phases. PNP-6MA can be oriented under a magnetic field ( B = 2 T), and its macroscopic orientation can be robustly stabilized by in situ polymerization. Even without macroscopic orientations, the fabricated thermal conducting liquid crystal (TCLC) films show the outstanding thermal conductivity of 1.21 W/m K, which is higher than conventional organic materials. The thermal conductivity of uniaxially and macroscopically oriented TCLC films can be 2.5 W/m K along the long axis of mesogenic core. The newly developed TCLC film can be used as a TIM between a high-power light-emitting diode and a heat sink.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Namil Kim
- Smart Materials R&D Center , Korea Automotive Technology Institute , Cheonan 31214 , Republic of Korea
| | | |
Collapse
|
12
|
Park M, Kang DG, Choi YJ, Yoon WJ, Koo J, Park SH, Ahn S, Jeong KU. Kinetically Controlled Polymorphic Superstructures of Pyrene-Based Asymmetric Liquid Crystal Dendron: Relationship Between Hierarchical Superstructures and Photophysical Properties. Chemistry 2018; 24:9015-9021. [DOI: 10.1002/chem.201801284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/17/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Minwook Park
- BK21 Plus Haptic Polymer Composite Research Team; Department of Polymer-Nano Science and Technology; Chonbuk National University; Jeonju Jeonbuk 54896 Korea
| | - Dong-Gue Kang
- BK21 Plus Haptic Polymer Composite Research Team; Department of Polymer-Nano Science and Technology; Chonbuk National University; Jeonju Jeonbuk 54896 Korea
| | - Yu-Jin Choi
- BK21 Plus Haptic Polymer Composite Research Team; Department of Polymer-Nano Science and Technology; Chonbuk National University; Jeonju Jeonbuk 54896 Korea
| | - Won-Jin Yoon
- BK21 Plus Haptic Polymer Composite Research Team; Department of Polymer-Nano Science and Technology; Chonbuk National University; Jeonju Jeonbuk 54896 Korea
| | - Jahyeon Koo
- BK21 Plus Haptic Polymer Composite Research Team; Department of Polymer-Nano Science and Technology; Chonbuk National University; Jeonju Jeonbuk 54896 Korea
| | - Seo-Hee Park
- BK21 Plus Haptic Polymer Composite Research Team; Department of Polymer-Nano Science and Technology; Chonbuk National University; Jeonju Jeonbuk 54896 Korea
| | - Seokhoon Ahn
- Institute of Advanced Composite Materials; Korea Institute of Science and Technology; Jeonbuk 565-905 Korea
| | - Kwang-Un Jeong
- BK21 Plus Haptic Polymer Composite Research Team; Department of Polymer-Nano Science and Technology; Chonbuk National University; Jeonju Jeonbuk 54896 Korea
| |
Collapse
|
13
|
Choi YJ, Kim JT, Yoon WJ, Kang DG, Park M, Kim DY, Lee MH, Ahn SK, Jeong KU. Azobenzene Molecular Machine: Light-Induced Wringing Gel Fabricated from Asymmetric Macrogelator. ACS Macro Lett 2018; 7:576-581. [PMID: 35632934 DOI: 10.1021/acsmacrolett.8b00167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To develop light-triggered wringing gels, an asymmetric macrogelator (1AZ3BP) was newly synthesized by the chemically bridging a photoisomerizable azobenzene (1AZ) molecular machine and a biphenyl-based (3BP) dendron with a 1,4-phenylenediformamide connector. 1AZ3BP was self-assembled into a layered superstructure in the bulk state, but 1AZ3BP formed a three-dimensional (3D) network organogel in solution. Upon irradiating UV light onto the 3D network organogel, the solvent of the organogel was squeezed and the 3D network was converted to the layered morphology. It was realized that the metastable 3D network organogels were fabricated mainly due to the nanophase separation in solution. UV isomerization of 1AZ3BP provided sufficient molecular mobility to form strong hydrogen bonds for the construction of the stable layered superstructure. The light-triggered wringing gels can be smartly applied in remote-controlled generators, liquid storages, and sensors.
Collapse
Affiliation(s)
- Yu-Jin Choi
- Department of Polymer-Nano Science and Technology and Department of Flexible and Printable Electronics, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji-Tae Kim
- Department of Polymer-Nano Science and Technology and Department of Flexible and Printable Electronics, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Won-Jin Yoon
- Department of Polymer-Nano Science and Technology and Department of Flexible and Printable Electronics, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Gue Kang
- Department of Polymer-Nano Science and Technology and Department of Flexible and Printable Electronics, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Minwook Park
- Department of Polymer-Nano Science and Technology and Department of Flexible and Printable Electronics, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Dae-Yoon Kim
- Department of Polymer-Nano Science and Technology and Department of Flexible and Printable Electronics, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Myong-Hoon Lee
- Department of Polymer-Nano Science and Technology and Department of Flexible and Printable Electronics, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Suk-kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology and Department of Flexible and Printable Electronics, Chonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|