1
|
Nestler M, Praetorius S, Huang ZF, Löwen H, Voigt A. Active smectics on a sphere. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:185001. [PMID: 38262063 DOI: 10.1088/1361-648x/ad21a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
The dynamics of active smectic liquid crystals confined on a spherical surface is explored through an active phase field crystal model. Starting from an initially randomly perturbed isotropic phase, several types of topological defects are spontaneously formed, and then annihilate during a coarsening process until a steady state is achieved. The coarsening process is highly complex involving several scaling laws of defect densities as a function of time where different dynamical exponents can be identified. In general the exponent for the final stage towards the steady state is significantly larger than that in the passive and in the planar case, i.e. the coarsening is getting accelerated both by activity and by the topological and geometrical properties of the sphere. A defect type characteristic for this active system is a rotating spiral of evolving smectic layering lines. On a sphere this defect type also determines the steady state. Our results can in principle be confirmed by dense systems of synthetic or biological active particles.
Collapse
Affiliation(s)
- Michael Nestler
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | - Simon Praetorius
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States of America
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Axel Voigt
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
2
|
Rajendra D, Mandal J, Hatwalne Y, Maiti PK. Packing and emergence of the ordering of rods in a spherical monolayer. SOFT MATTER 2022; 19:137-146. [PMID: 36477473 DOI: 10.1039/d2sm00799a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Spatially ordered systems confined to surfaces such as spheres exhibit interesting topological structures because of curvature induced frustration in orientational and translational order. The study of these structures is important for investigating the interplay between the geometry, topology, and elasticity, and for their potential applications in materials science, such as engineering directionally binding particles. In this work, we numerically simulate a spherical monolayer of soft repulsive spherocylinders (SRSs) and study the packing of rods and their ordering transition as a function of the packing fraction. In the model that we study, the centers of mass of the spherocylinders (situated at their geometric centers) are constrained to move on a spherical surface. The spherocylinders are free to rotate about any axis that passes through their respective centers of mass. We show that, up to moderate packing fractions, a two dimensional liquid crystalline phase is formed whose orientational ordering increases continuously with increasing density. This monolayer of orientationally ordered SRS particles at medium densities resembles a hedgehog-long axes of the SRS particles are aligned along the local normal to the sphere. At higher packing fractions, the system undergoes a transition to the solid phase, which is riddled with topological point defects (disclinations) and grain boundaries that divide the whole surface into several domains.
Collapse
Affiliation(s)
- Dharanish Rajendra
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| | - Jaydeep Mandal
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| | | | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
3
|
Gnidovec A, Božič A, Čopar S. Dense packings of geodesic hard ellipses on a sphere. SOFT MATTER 2022; 18:7670-7678. [PMID: 36172841 DOI: 10.1039/d2sm00624c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Packing problems are abundant in nature and have been researched thoroughly both experimentally and in numerical models. In particular, packings of anisotropic, elliptical particles often emerge in models of liquid crystals, colloids, and granular and jammed matter. While most theoretical studies on anisotropic particles have thus far dealt with packings in Euclidean geometry, there are many experimental systems where anisotropically-shaped particles are confined to a curved surface, such as Pickering emulsions stabilized by ellipsoidal particles or protein adsorbates on lipid vesicles. Here, we study random close packing configurations in a two-dimensional model of spherical geodesic ellipses. We focus on the interplay between finite-size effects and curvature that is most prominent at smaller system sizes. We demonstrate that on a spherical surface, monodisperse ellipse packings are inherently disordered, with a non-monotonic dependence of both their packing fraction and the mean contact number on the ellipse aspect ratio, as has also been observed in packings of ellipsoids in both 2D and 3D flat space. We also point out some fundamental differences with previous Euclidean studies and discuss the effects of curvature on our results. Importantly, we show that the underlying spherical surface introduces frustration and results in disordered packing configurations even in systems of monodispersed particles, in contrast to the 2D Euclidean case of ellipse packing. This demonstrates that closed curved surfaces can be effective at introducing disorder in a system and could facilitate the study of monodispersed random packings.
Collapse
Affiliation(s)
- Andraž Gnidovec
- University of Ljubljana, Faculty of Mathematics and Physics, SI-1000 Ljubljana, Slovenia.
| | - Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Simon Čopar
- University of Ljubljana, Faculty of Mathematics and Physics, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Monderkamp PA, Wittmann R, Te Vrugt M, Voigt A, Wittkowski R, Löwen H. Topological fine structure of smectic grain boundaries and tetratic disclination lines within three-dimensional smectic liquid crystals. Phys Chem Chem Phys 2022; 24:15691-15704. [PMID: 35552573 DOI: 10.1039/d2cp00060a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Observing and characterizing the complex ordering phenomena of liquid crystals subjected to external constraints constitutes an ongoing challenge for chemists and physicists alike. To elucidate the delicate balance appearing when the intrinsic positional order of smectic liquid crystals comes into play, we perform Monte-Carlo simulations of rod-like particles in a range of cavities with a cylindrical symmetry. Based on recent insights into the topology of smectic orientational grain boundaries in two dimensions, we analyze the emerging three-dimensional defect structures from the perspective of tetratic symmetry. Using an appropriate three-dimensional tetratic order parameter constructed from the Steinhardt order parameters, we show that those grain boundaries can be interpreted as a pair of tetratic disclination lines that are located on the edges of the nematic domain boundary. Thereby, we shed light on the fine structure of grain boundaries in three-dimensional confined smectics.
Collapse
Affiliation(s)
- Paul A Monderkamp
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Michael Te Vrugt
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Axel Voigt
- Institut für Wissenschaftliches Rechnen, Technische Universität Dresden, 01062 Dresden, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
5
|
Monderkamp PA, Wittmann R, Cortes LBG, Aarts DGAL, Smallenburg F, Löwen H. Topology of Orientational Defects in Confined Smectic Liquid Crystals. PHYSICAL REVIEW LETTERS 2021; 127:198001. [PMID: 34797147 DOI: 10.1103/physrevlett.127.198001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/28/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
We propose a general formalism to characterize orientational frustration of smectic liquid crystals in confinement by interpreting the emerging networks of grain boundaries as objects with a topological charge. In a formal idealization, this charge is distributed in pointlike units of quarter-integer magnitude, which we identify with tetratic disclinations located at the end points and nodes. This coexisting nematic and tetratic order is analyzed with the help of extensive Monte Carlo simulations for a broad range of two-dimensional confining geometries as well as colloidal experiments, showing how the observed defect networks can be universally reconstructed from simple building blocks. We further find that the curvature of the confining wall determines the anchoring behavior of grain boundaries, such that the number of nodes in the emerging networks and the location of their end points can be tuned by changing the number and smoothness of corners, respectively.
Collapse
Affiliation(s)
- Paul A Monderkamp
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Louis B G Cortes
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Frank Smallenburg
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Wittmann R, Cortes LBG, Löwen H, Aarts DGAL. Particle-resolved topological defects of smectic colloidal liquid crystals in extreme confinement. Nat Commun 2021; 12:623. [PMID: 33504780 PMCID: PMC7840983 DOI: 10.1038/s41467-020-20842-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Confined samples of liquid crystals are characterized by a variety of topological defects and can be exposed to external constraints such as extreme confinements with nontrivial topology. Here we explore the intrinsic structure of smectic colloidal layers dictated by the interplay between entropy and an imposed external topology. Considering an annular confinement as a basic example, a plethora of competing states is found with nontrivial defect structures ranging from laminar states to multiple smectic domains and arrays of edge dislocations, which we refer to as Shubnikov states in formal analogy to the characteristic of type-II superconductors. Our particle-resolved results, gained by a combination of real-space microscopy of thermal colloidal rods and fundamental-measure-based density functional theory of hard anisotropic bodies, agree on a quantitative level.
Collapse
Affiliation(s)
- René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Louis B G Cortes
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Ishii Y, Zhou Y, He K, Takanishi Y, Yamamoto J, de Pablo J, Lopez-Leon T. Structural transformations in tetravalent nematic shells induced by a magnetic field. SOFT MATTER 2020; 16:8169-8178. [PMID: 32555908 DOI: 10.1039/d0sm00340a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The role of applied fields on the structure of liquid crystals confined to shell geometries has been studied in past theoretical work, providing strategies to produce liquid crystal shells with controlled defect structure or valence. However, the predictions of such studies have not been experimentally explored yet. In this work, we study the structural transformations undergone by tetravalent nematic liquid crystal shells under a strong uniform magnetic field, using both experiments and simulations. We consider two different cases in terms of shell geometry and initial defect symmetry: (i) homogeneous shells with four s = +1/2 defects in a tetrahedral arrangement, and (ii) inhomogeneous shells with four s = +1/2 defects localized in their thinner parts. Consistently with previous theoretical results, we observe that the initial defect structure evolves into a bipolar one, in a process where the defects migrate towards the poles. Interestingly, we find that the defect trajectories and dynamics are controlled by curvature walls that connect the defects by pairs. Based on the angle between Bs, the local projection of the magnetic field on the shell surface, and n+½, a vector describing the defect orientations, we are able to predict the nature and shape of those inversion walls, and therefore, the trajectory and dynamics of the defects. This rule, based on symmetry arguments, is consistent with both experiments and simulations and applies for shells that are either homogeneous or inhomogeneous in thickness. By modifying the angle between Bs and n+½, we are able to induce, in controlled way, complex routes towards the final bipolar state. In the case of inhomogeneous shells, the specific symmetry of the shell allowed us to observe a hybrid splay-bend Helfrich wall for the first time.
Collapse
Affiliation(s)
- Yoko Ishii
- Department of Physics, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8562, Japan
| | - Ye Zhou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA.
| | - Kunyun He
- UMR No. 7083, CNRS, Gulliver, ESPCI Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France.
| | - Yoichi Takanishi
- Department of Physics, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8562, Japan
| | - Jun Yamamoto
- Department of Physics, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8562, Japan
| | - Juan de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA.
| | - Teresa Lopez-Leon
- UMR No. 7083, CNRS, Gulliver, ESPCI Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
8
|
Nestler M, Nitschke I, Löwen H, Voigt A. Properties of surface Landau-de Gennes Q-tensor models. SOFT MATTER 2020; 16:4032-4042. [PMID: 32270809 DOI: 10.1039/c9sm02475a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Uniaxial nematic liquid crystals whose molecular orientation is subjected to tangential anchoring on a curved surface offer a non trivial interplay between the geometry and the topology of the surface and the orientational degree of freedom. We consider a general thin film limit of a Landau-de Gennes Q-tensor model which retains the characteristics of the 3D model. From this, previously proposed surface models follow as special cases. We compare fundamental properties, such as the alignment of the orientational degrees of freedom with principle curvature lines, order parameter symmetry and phase transition type for these models, and suggest experiments to identify suitable model assumptions.
Collapse
Affiliation(s)
- Michael Nestler
- Institut für Wissenschaftliches Rechnen, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Ingo Nitschke
- Institut für Wissenschaftliches Rechnen, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Hartmut Löwen
- Institut für Theoretische Physik II - Soft Matter, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Axel Voigt
- Institut für Wissenschaftliches Rechnen, Technische Universität Dresden, 01062 Dresden, Germany. and Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany and Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
9
|
Mackie A, Gourcy S, Rigby N, Moffat J, Capron I, Bajka B. The fate of cellulose nanocrystal stabilised emulsions after simulated gastrointestinal digestion and exposure to intestinal mucosa. NANOSCALE 2019; 11:2991-2998. [PMID: 30698181 PMCID: PMC6371889 DOI: 10.1039/c8nr05860a] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
It is well recognised that the average UK diet does not contain sufficient fibre. However, the introduction of fibre is often at the detriment of the organoleptic properties of a food. In this study on the gastrointestinal fate of nanoparticles, we have used cellulose nano-crystals (CNCs) as Pickering stabilising agents in oil in water emulsions. These emulsions were found to be highly stable against coalescence. The CNC and control emulsions were then exposed to simulated upper gastrointestinal tract digestion and the results compared to those obtained from a conventional protein stabilised emulsion. Finally the digested emulsions were exposed to murine intestinal mucosa and lipid and bile absorption was monitored. Importantly, the results show that the CNCs were entrapped in the intestinal mucus layer and failed to reach the underlying epithelium. This entrapment may also have led to the reduced absorption of saturated lipids from the CNC stabilised emulsion versus the control emulsion. The results show the potential of CNCs as a safe and effective emulsifier.
Collapse
Affiliation(s)
- Alan Mackie
- School of Food Science and Nutrition
, University of Leeds
,
Leeds
, LS2 9JT
, UK
.
| | - Simon Gourcy
- Univ Angers
, Inst Univ Technol
,
F-49016 Angers
, France
| | - Neil Rigby
- School of Food Science and Nutrition
, University of Leeds
,
Leeds
, LS2 9JT
, UK
.
- Institute of Food Research
, Norwich Research Park
,
Norwich
, NR47UA
, UK
| | - Jonathan Moffat
- Asylum Research
, an Oxford Instruments Company
,
High Wycombe
, HP12 3SE
, UK
| | - Isabel Capron
- INRA
, Biopolymeres Interact Assemblages UR1268
,
F-44316 Nantes
, France
| | - Balazs Bajka
- Institute of Food Research
, Norwich Research Park
,
Norwich
, NR47UA
, UK
- Department of Nutritional Sciences
, King's College London
,
London
, SE1 9NH
, UK
| |
Collapse
|
10
|
Allahyarov E, Löwen H. Length segregation in mixtures of spherocylinders induced by imposed topological defects. SOFT MATTER 2018; 14:8962-8973. [PMID: 30375629 DOI: 10.1039/c8sm01790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We explore length segregation in binary mixtures of spherocylinders of lengths L1 and L2 which are tangentially confined on a spherical surface of radius R. The orientation of the spherocylinders is constrained along an externally imposed direction field on the sphere which is either along the longitude or the latitude lines of the sphere. In both situations, integer orientational defects at the poles are imposed. Using computer simulations we show that these topological defects induce a complex segregation picture also depending on the length ratio factor γ = L2/L1 and the total packing fraction η of the spherocylinders. When the binary mixture is aligned along the longitude lines of the sphere, shorter rods tend to accumulate at the topological defects of the polar caps whereas longer rods occupy the central equatorial area of the spherical surface. In the reverse case of latitude ordering, a new state can emerge where longer rods are predominantly both in the cap and in the equatorial areas and shorter rods are localized in between. As a reference situation, we consider a defect-free situation in the flat plane and do not find any length segregation there at similar γ and η; hence, the segregation is purely induced by the imposed topological defects. We also develop an Onsager-like density functional theory which is capable of predicting length segregation in ordered mixtures. At low density, the results of this theory are in good agreement with the simulation data.
Collapse
Affiliation(s)
- Elshad Allahyarov
- Theoretische Chemie, Universität Duisburg-Essen, D-45141 Essen, Germany
| | | |
Collapse
|
11
|
Shendruk TN, Thijssen K, Yeomans JM, Doostmohammadi A. Twist-induced crossover from two-dimensional to three-dimensional turbulence in active nematics. Phys Rev E 2018; 98:010601. [PMID: 30110824 DOI: 10.1103/physreve.98.010601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/27/2022]
Abstract
While studies of active nematics in two dimensions have shed light on various aspects of the flow regimes and topology of active matter, three-dimensional properties of topological defects and chaotic flows remain unexplored. By confining a film of active nematics between two parallel plates, we use continuum simulations and analytical arguments to demonstrate that the crossover from quasi-two-dimensional (quasi-2D) to three-dimensional (3D) chaotic flows is controlled by the morphology of the disclination lines. For small plate separations, the active nematic behaves as a quasi-2D material, with straight topological disclination lines spanning the height of the channel and exhibiting effectively 2D active turbulence. Upon increasing channel height, we find a crossover to 3D chaotic flows due to the contortion of disclinations above a critical activity. Above this critical activity highly contorted disclination lines and disclination loops are formed. We further show that these contortions are engendered by twist perturbations producing a sharp change in the curvature of disclinations.
Collapse
Affiliation(s)
- Tyler N Shendruk
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | - Kristian Thijssen
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Amin Doostmohammadi
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
12
|
Pȩkalski J, Ciach A. Orientational ordering of lamellar structures on closed surfaces. J Chem Phys 2018; 148:174902. [PMID: 29739225 DOI: 10.1063/1.5026112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Self-assembly of particles with short-range attraction and long-range repulsion interactions on a flat and on a spherical surface is compared. Molecular dynamics simulations are performed for the two systems having the same area and the density optimal for formation of stripes of particles. Structural characteristics, e.g., a cluster size distribution, a number of defects, and an orientational order parameter (OP), as well as the specific heat, are obtained for a range of temperatures. In both cases, the cluster size distribution becomes bimodal and elongated clusters appear at the temperature corresponding to the maximum of the specific heat. When the temperature decreases, orientational ordering of the stripes takes place and the number of particles per cluster or stripe increases in both cases. However, only on the flat surface, the specific heat has another maximum at the temperature corresponding to a rapid change of the OP. On the sphere, the crossover between the isotropic and anisotropic structures occur in a much broader temperature interval; the orientational order is weaker and occurs at significantly lower temperature. At low temperature, the stripes on the sphere form spirals and the defects resemble defects in the nematic phase of rods adsorbed at a sphere.
Collapse
Affiliation(s)
- J Pȩkalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - A Ciach
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|