Tauber J, Rovigatti L, Dussi S, van der Gucht J. Sharing the Load: Stress Redistribution Governs Fracture of Polymer Double Networks.
Macromolecules 2021;
54:8563-8574. [PMID:
34602652 PMCID:
PMC8482750 DOI:
10.1021/acs.macromol.1c01275]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/28/2022]
Abstract
![]()
The stress response
of polymer double networks depends not only
on the properties of the constituent networks but also on the interactions
arising between them. Here, we demonstrate, via coarse-grained simulations,
that both their global stress response and their microscopic fracture
mechanics are governed by load sharing through these internetwork
interactions. By comparing our results with affine predictions, where
stress redistribution is by definition homogeneous, we show that stress
redistribution is highly inhomogeneous. In particular, the affine
prediction overestimates the fraction of broken chains by almost an
order of magnitude. Furthermore, homogeneous stress distribution predicts
a single fracture process, while in our simulations, fracture of sacrificial
chains takes place in two steps governed by load sharing within a
network and between networks, respectively. Our results thus provide
a detailed microscopic picture of how inhomogeneous stress redistribution
after rupture of chains governs the fracture of polymer double networks.
Collapse