1
|
Dobroserdova AB, Minina ES, Sánchez PA, Likos CN, Kantorovich SS. Core-shell nanogels: the effects of morphology, electro- and magnetostatic interactions. SOFT MATTER 2024; 20:7797-7810. [PMID: 39018087 DOI: 10.1039/d4sm00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
We study the influence of core-shell morphology on the structural characteristics of nanogels. Using computer simulations, we examine three different types of systems, distinguished by their intermonomer interactions: those with excluded volume only; those with charged monomers and excluded volume; and those with excluded volume combined with a certain number of magnetised nanoparticles incorporated within the nanogel. We observe that if the polymers in the shell are short and dense, they tend to penetrate the core. This effect of backfolding is enhanced in charged nanogels, regardless of whether all monomers are charged, or only the core or shell ones. The presence of an experimentally available amount of magnetic nanoparticles in a gel, on the one hand, does not lead to any significant morphological changes. On the other hand, the morphology of the nanogel with magnetic particles has an impact on its magnetic susceptibility. Particular growth of the magnetic response is observed if a long shell of a nanogel is functionalised.
Collapse
Affiliation(s)
| | - Elena S Minina
- Faculty of Physics, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
2
|
Beyer D, Torres PB, Pineda SP, Narambuena CF, Grad JN, Košovan P, Blanco PM. pyMBE: The Python-based molecule builder for ESPResSo. J Chem Phys 2024; 161:022502. [PMID: 38995083 DOI: 10.1063/5.0216389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
We present the Python-based Molecule Builder for ESPResSo (pyMBE), an open source software application to design custom coarse-grained (CG) models, as well as pre-defined models of polyelectrolytes, peptides, and globular proteins in the Extensible Simulation Package for Research on Soft Matter (ESPResSo). The Python interface of ESPResSo offers a flexible framework, capable of building custom CG models from scratch. As a downside, building CG models from scratch is prone to mistakes, especially for newcomers in the field of CG modeling, or for molecules with complex architectures. The pyMBE module builds CG models in ESPResSo using a hierarchical bottom-up approach, providing a robust tool to automate the setup of CG models and helping new users prevent common mistakes. ESPResSo features the constant pH (cpH) and grand-reaction (G-RxMC) methods, which have been designed to study chemical reaction equilibria in macromolecular systems with many reactive species. However, setting up these methods for systems, which contain several types of reactive groups, is an error-prone task, especially for beginners. The pyMBE module enables the automatic setup of cpH and G-RxMC simulations in ESPResSo, lowering the barrier for newcomers and opening the door to investigate complex systems not studied with these methods yet. To demonstrate some of the applications of pyMBE, we showcase several case studies where we successfully reproduce previously published simulations of charge-regulating peptides and globular proteins in bulk solution and weak polyelectrolytes in dialysis. The pyMBE module is publicly available as a GitHub repository (https://github.com/pyMBE-dev/pyMBE), which includes its source code and various sample and test scripts, including the ones that we used to generate the data presented in this article.
Collapse
Affiliation(s)
- David Beyer
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Paola B Torres
- Grupo de Bionanotecnologia y Sistemas Complejos. Infap-CONICET and Facultad Regional San Rafael, Universidad Tecnológica Nacional, 5600 San Rafael, Argentina
| | - Sebastian P Pineda
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
| | - Claudio F Narambuena
- Grupo de Bionanotecnologia y Sistemas Complejos. Infap-CONICET and Facultad Regional San Rafael, Universidad Tecnológica Nacional, 5600 San Rafael, Argentina
| | - Jean-Noël Grad
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
| | - Pablo M Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Department of Physics, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
3
|
Strauch C, Schneider S. Monte Carlo simulation of the ionization and uptake behavior of cationic oligomers into pH-responsive polyelectrolyte microgels of opposite charge - a model for oligopeptide uptake and release. SOFT MATTER 2024; 20:1263-1274. [PMID: 38236145 DOI: 10.1039/d3sm01426f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
External stimuli can tune the uptake and release of guest molecules in microgels. Especially their pH responsiveness makes microgels exciting candidates for drug delivery systems. When both microgel and guest molecules are pH-responsive, predicting the electrostatically driven uptake can be complex since the ionization depends on many parameters. In this work, we performed Metropolis Monte Carlo simulations while systematically varying the pK of the monomers, the concentrations of microgel and guest molecules to obtain a better understanding of the uptake of weak cationic oligomers as a model for oligopeptides into a weak anionic polyelectrolyte microgel. Further, we varied the chain length of the oligomers. The polyelectrolyte networks can take up oligomers when both the network and the oligomers are charged. The presence of both species in the system leads to a mutual enhancement of their ionization. The uptake induces a release of counterions and results in complex formation between the oligomers and the network, leading to the collapse of the networks. Longer oligomers enhance the ionization of the network and, therefore, the complexation. A higher microgel concentration increases the uptake only around the isoelectric point but prevents the uptake due to lower entropy gain at counterion release at higher pH. The results give an insight into the uptake of cationic oligomers into oppositely charged polyelectrolyte microgels and provide hints for the design of anionic microgels as carriers for guest molecules e.g. antimicrobial peptides.
Collapse
Affiliation(s)
- Christian Strauch
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| |
Collapse
|
4
|
Alziyadi MO, Denton AR. Osmotic swelling behavior of surface-charged ionic microgels. J Chem Phys 2023; 159:184901. [PMID: 37942869 DOI: 10.1063/5.0161027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
In recent years, ionic microgels have garnered much attention due to their unique properties, especially their stimulus-sensitive swelling behavior. The tunable response of these soft, permeable, compressible, charged colloidal particles is increasingly attractive for applications in medicine and biotechnologies, such as controlled drug delivery, tissue engineering, and biosensing. The ability to model and predict variation of the osmotic pressure of a single microgel with respect to changes in particle properties and environmental conditions proves vital to such applications. In this work, we apply both nonlinear Poisson-Boltzmann theory and molecular dynamics simulation to ionic microgels (macroions) in the cell model to compute density profiles of microions (counterions, coions), single-microgel osmotic pressure, and equilibrium swelling ratios of spherical microgels whose fixed charge is confined to the macroion surface. The basis of our approach is an exact theorem that relates the electrostatic component of the osmotic pressure to the microion density profiles. Close agreement between theory and simulation serves as a consistency check to validate our approach. We predict that surface-charged microgels progressively deswell with increasing microgel concentration, starting well below close packing, and with increasing salt concentration, in qualitative agreement with experiments. Comparison with previous results for microgels with fixed charge uniformly distributed over their volume demonstrates that surface-charged microgels deswell more rapidly than volume-charged microgels. We conclude that swelling behavior of ionic microgels in solution is sensitive to the distribution of fixed charge within the polymer-network gel and strongly depends on bulk concentrations of both microgels and salt ions.
Collapse
Affiliation(s)
- Mohammed O Alziyadi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Alan R Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
5
|
Rudov AA, Portnov IV, Bogdanova AR, Potemkin II. Structure of swollen hollow polyelectrolyte nanogels with inhomogeneous cross-link distribution. J Colloid Interface Sci 2023; 640:1015-1028. [PMID: 36921382 DOI: 10.1016/j.jcis.2023.02.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
HYPOTHESIS Recently, it has become possible to synthesize hollow polyelectrolyte nano- and microgels. The shell permeability can be controlled by external stimuli, while the cavity can serve as a storage place for guest molecules. However, there is a lack of a detailed understanding at the molecular level regarding the role of the network topology, inhomogeneities of the distribution of cross-links, and the impact of the electrostatics on the structural response of hollow microgel to external stimuli. To bridge these gaps, molecular dynamics (MD) of computer simulations are used. EXPERIMENTS Here, we propose a fresh methodology to create realistic hollow microgel particles in silico. The technique involves a gradual change in the average local length of subchains depending on the distance to the center of mass of the microgel particles resulting in the microgels with a non-uniform distribution of cross-linking species. In particular, a series of microgels with (i) a highly cross-linked inner part of the shell and gradually decreased cross-linker concentration towards the periphery, (ii) microgels with loosely cross-linked inner and outer parts, as well as (iii) microgels with a more-or-less homogeneous structure, have been created and validated. Counterions and salt ions are taken into account explicitly, and electrostatic interactions are described by the Coulomb potential. FINDINGS Our studies reveal a strong dependence of the microgel swelling response on the network topology. Simple redistribution of cross-links plays a significant role in the structure of the microgels, including cavity size, microgel size, fuzziness, and extension of the inner and outer parts of the microgels. Our results indicate the possibilities of qualitative justification of the structure of the hollow microgels in the experiments by measuring the relative change in the size of the sacrificial core to the size of the cavity and by estimation of a power law function, [Formula: see text] , of the hydrodynamic radius of the hollow microgels as a function of added salt concentration.
Collapse
Affiliation(s)
- Andrey A Rudov
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Ivan V Portnov
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation; A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Alisa R Bogdanova
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
6
|
Strauch C, Schneider S. Ionisation and swelling behaviour of weak polyampholyte core-shell networks - a Monte Carlo study. SOFT MATTER 2023; 19:938-950. [PMID: 36632835 DOI: 10.1039/d2sm01301k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The network charge of polyampholyte microgels can be tuned by varying the pH of the surrounding solution, and a charge reversal from a positively charged microgel at low pH to a negatively charged microgel at high pH can be achieved. In a titration experiment, it is difficult to tell apart the ionisation of the acidic and basic monomers in the network and to determine the distribution of charges in the network, whereas using Metropolis Monte Carlo simulations, both the degree of ionisation and the distribution of ionised monomers can be determined separately for both species. Building on our earlier work on alternating polyampholyte microgels, we now investigated the pH-dependent ionisation and the swelling behaviour of polyampholyte core-shell microgels under good solvent conditions. For this purpose, we performed Metropolis Monte Carlo simulations for a bead-spring model using the constant-pH method. As in our previous study on alternating microgels, the width of the U-shaped curve of the microgels volume as a function of pH depends on the relative dissociation constants of acid and base, and the microgel volume can be approximated by a linear function of the total network charge. Due to the spatial separation of acid and base in core-shell systems, the ionisation is less enhanced compared to a microgel with an alternating distribution of the two species. Nevertheless, we still see an influence of the presence of one species on the ionisation behaviour of the other species under good solvent conditions. Furthermore, the isoelectric point is shifted towards higher pH, which is caused by a higher charge density in the core compared to that in the shell. Added salt changes the Donnan equilibrium, which determines the counterion distribution within and outside of the microgel. At the same time, it contributes to the electrostatic screening of the network charges, leading to a narrowing of the U-shaped volume transition curve.
Collapse
Affiliation(s)
- Christian Strauch
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| |
Collapse
|
7
|
Landsgesell J, Beyer D, Hebbeker P, Košovan P, Holm C. The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - David Beyer
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Pascal Hebbeker
- Department of Physical and Macromolecular Chemistry, Charles University, Prague 116 36, Czechia
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Charles University, Prague 116 36, Czechia
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
8
|
Curk T, Yuan J, Luijten E. Accelerated simulation method for charge regulation effects. J Chem Phys 2022; 156:044122. [PMID: 35105090 DOI: 10.1063/5.0066432] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The net charge of solvated entities, ranging from polyelectrolytes and biomolecules to charged nanoparticles and membranes, depends on the local dissociation equilibrium of individual ionizable groups. Incorporation of this phenomenon, charge regulation (CR), in theoretical and computational models requires dynamic, configuration-dependent recalculation of surface charges and is therefore typically approximated by assuming constant net charge on particles. Various computational methods exist that address this. We present an alternative, particularly efficient CR Monte Carlo method (CR-MC), which explicitly models the redistribution of individual charges and accurately samples the correct grand-canonical charge distribution. In addition, we provide an open-source implementation in the large-scale Atomic/Molecular Massively Parallel Simulator molecular dynamics (MD) simulation package, resulting in a hybrid MD/CR-MC simulation method. This implementation is designed to handle a wide range of implicit-solvent systems that model discreet ionizable groups or surface sites. The computational cost of the method scales linearly with the number of ionizable groups, thereby allowing accurate simulations of systems containing thousands of individual ionizable sites. By matter of illustration, we use the CR-MC method to quantify the effects of CR on the nature of the polyelectrolyte coil-globule transition and on the effective interaction between oppositely charged nanoparticles.
Collapse
Affiliation(s)
- Tine Curk
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiaxing Yuan
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erik Luijten
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
9
|
|
10
|
Alziyadi MO, Denton AR. Osmotic pressure and swelling behavior of ionic microcapsules. J Chem Phys 2021; 155:214904. [PMID: 34879668 DOI: 10.1063/5.0064282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ionic microcapsules are hollow shells of hydrogel, typically 10-1000 nm in radius, composed of cross-linked polymer networks that become charged and swollen in a good solvent. The ability of microcapsules to swell/deswell in response to changes in external stimuli (e.g., temperature, pH, and ionic strength) suits them to applications, such as drug delivery, biosensing, and catalysis. The equilibrium swelling behavior of ionic microcapsules is determined by a balance of electrostatic and elastic forces. The electrostatic component of the osmotic pressure of a microcapsule-the difference in the pressure between the inside and outside of the particle-plays a vital role in determining the swelling behavior. Within the spherical cell model, we derive exact expressions for the radial pressure profile and for the electrostatic and gel components of the osmotic pressure of a microcapsule, which we compute via Poisson-Boltzmann theory and molecular dynamics simulation. For the gel component, we use the Flory-Rehner theory of polymer networks. By combining the electrostatic and gel components of the osmotic pressure, we compute the equilibrium size of ionic microcapsules as a function of particle concentration, shell thickness, and valence. We predict concentration-driven deswelling at relatively low concentrations at which steric interactions between particles are weak and demonstrate that this response can be attributed to crowding-induced redistribution of counterions. Our approach may help to guide the design and applications of smart stimuli-responsive colloidal particles.
Collapse
Affiliation(s)
- Mohammed O Alziyadi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Alan R Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
11
|
Gallegos A, Ong GMC, Wu J. Thermodynamic non-ideality in charge regulation of weak polyelectrolytes. SOFT MATTER 2021; 17:9221-9234. [PMID: 34596201 DOI: 10.1039/d1sm00848j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer ionization differs from that for their monomeric counterparts due to intramolecular correlations. Such effects are conventionally described in terms of the site-binding model that accounts for short-range interactions between neighboring sites. With an apparent equilibrium constant for each ionizable group and the nearest-neighbor energy as adjustable parameters, the site-binding method is useful to correlate experimental titration curves when the site-site interactions are insignificant at long ranges. This work aims to describe the electrostatic behavior of weak polyelectrolytes in aqueous solutions on the basis of the intrinsic equilibrium constants of the individual ionizable groups and solution conditions underlying the thermodynamic non-ideality. A molecular thermodynamic model is proposed for the protonation of weak polyelectrolytes by incorporating classical density functional theory into the site-binding model to account for the effects of the local ionic environment on both inter-chain and intra-chain correlations. By an extensive comparison of theoretical predictions with experimental titration curves, we demonstrate that the thermodynamic model is able to quantify the ionization behavior of weak polyelectrolytes over a broad range of molecular architectures and solution conditions.
Collapse
Affiliation(s)
- Alejandro Gallegos
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Gary M C Ong
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
12
|
Two-step deswelling in the Volume Phase Transition of thermoresponsive microgels. Proc Natl Acad Sci U S A 2021; 118:2109560118. [PMID: 34508008 PMCID: PMC8449345 DOI: 10.1073/pnas.2109560118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
Microgels, colloidal-scale polymer networks, are the prototype soft colloids. When the constituent polymers are thermoresponsive, they undergo a volume phase transition (VPT) from a swollen to a collapsed state at a characteristic temperature, close to ambient one, of great appeal for several applications. To describe this phenomenon, microgels are usually treated as neutral, but here we show that electrostatics needs to be taken into account. In particular, deswelling occurs via a two-step, rather than a homogeneous, particle collapse, mainly driven by peripheral charges located on the microgel corona, for which we also establish a unifying framework encompassing all studied microgels. Our work thus provides a change of perspective to describe these fascinating systems. Thermoresponsive microgels are one of the most investigated types of soft colloids, thanks to their ability to undergo a Volume Phase Transition (VPT) close to ambient temperature. However, this fundamental phenomenon still lacks a detailed microscopic understanding, particularly regarding the presence and the role of charges in the deswelling process. This is particularly important for the widely used poly(N-isopropylacrylamide)–based microgels, where the constituent monomers are neutral but charged groups arise due to the initiator molecules used in the synthesis. Here, we address this point combining experiments with state-of-the-art simulations to show that the microgel collapse does not happen in a homogeneous fashion, but through a two-step mechanism, entirely attributable to electrostatic effects. The signature of this phenomenon is the emergence of a minimum in the ratio between gyration and hydrodynamic radii at the VPT. Thanks to simulations of microgels with different cross-linker concentrations, charge contents, and charge distributions, we provide evidence that peripheral charges arising from the synthesis are responsible for this behavior and we further build a universal master curve able to predict the two-step deswelling. Our results have direct relevance on fundamental soft condensed matter science and on applications where microgels are involved, ranging from materials to biomedical technologies.
Collapse
|
13
|
Hofzumahaus C, Strauch C, Schneider S. Monte Carlo simulations of weak polyampholyte microgels: pH-dependence of conformation and ionization. SOFT MATTER 2021; 17:6029-6043. [PMID: 34076026 DOI: 10.1039/d1sm00433f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We performed Metropolis Monte Carlo simulations to investigate the impact of varying acid and base dissociation constants on the pH-dependent ionization and conformation of weak polyampholyte microgels under salt-free conditions and under explicit consideration of the chemical ionization equilibria of the acidic and basic groups and their electrostatic interaction. Irrespective of their relative acid and base dissociation constant, all of the microgels undergo a pH-dependent charge reversal from positive to negative with a neutral charge at the isoelectric point. This charge reversal is accompanied by a U-shaped swelling transition of the microgels with a minimum of their size at the point of charge neutrality. The width of the U-shaped swelling transition, however, is found to depend on the chosen relative acid and base dissociation constants through which the extent of the favorable electrostatic intramolecular interaction of the ionized acidic and basic groups is altered. The pH-dependent swelling transition of the microgels is found to become broader, the stronger the intramolecular electrostatic interaction of the oppositely charged ionized species is. In addition, the intramolecular charge compensation of the acidic and basic groups of the microgels allows their counterions to abandon the microgel and the associated gain in translational entropy further amplifies the broadening of the pH-dependent swelling transition. The analysis of the radial ionization profiles of the acidic and basic groups of the differently composed microgels reveals a variety of radial ionization patterns with a dependence on the overall charge of the microgels.
Collapse
Affiliation(s)
- C Hofzumahaus
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - C Strauch
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - S Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| |
Collapse
|
14
|
Pérez-Chávez NA, Albesa AG, Longo GS. Thermodynamic Theory of Multiresponsive Microgel Swelling. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Néstor A. Pérez-Chávez
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| | - Alberto G. Albesa
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| | - Gabriel S. Longo
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| |
Collapse
|
15
|
Eichhorn J, Gordievskaya YD, Kramarenko EY, Khokhlov AR, Schacher FH. pH-Dependent Structure of Block Copolymer Micelles Featuring a Polyampholyte Corona: A Combined Experimental and Theoretical Approach. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonas Eichhorn
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, Jena 07743, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, Jena 07743, Germany
| | - Yulia D. Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1-2, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, Moscow 119991, Russia
- Institute of Advanced Energy Related Nanomaterials, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Elena Yu. Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1-2, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, Moscow 119991, Russia
| | - Alexei R. Khokhlov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1-2, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, Moscow 119991, Russia
- Institute of Advanced Energy Related Nanomaterials, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, Jena 07743, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, Jena 07743, Germany
| |
Collapse
|
16
|
Pérez-Chávez NA, Nosthas Aguiar V, Allegretto JA, Albesa AG, Giussi JM, Longo GS. Triggering doxorubicin release from responsive hydrogel films by polyamine uptake. SOFT MATTER 2020; 16:7492-7502. [PMID: 32724986 DOI: 10.1039/d0sm00951b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyamines such as putrescine, spermidine and spermine are required in many inter- and intra-cellular processes. There is, however, evidence of anomalously high concentrations of these polyamines around cancer cells. Furthermore, high polyamine concentrations play a key role in accelerating the speed of cancer proliferation. Some current therapies target the reduction of the polyamine concentration to delay the cancer advance. In this study, we use a molecular theory to prove the concept that poly(methacrylic acid) (PMAA) hydrogels can play the dual role of incorporating and retaining polyamines as well as releasing preloaded drugs in response. Towards such a goal, we have developed a molecular model for each of the chemical species, which includes the shape, size, charge, protonation state, and configuration. Our results indicate that PMAA hydrogel films can incorporate significant amounts of polyamines; this absorption increases with the solution concentration of the polyamines. Doxorubicin was chosen as a model drug for this study, which can be successfully incorporated within the film; the optimal encapsulation conditions occur at low salt concentrations and pH values near neutral. Polyamine absorption within the film results in the desorption of the drug from the hydrogel. An increase in the concentration of the polyamines enhances the drug release. To validate our theoretical findings, poly(methacrylic acid) hydrogel thin films were synthesized by atom transfer radical polymerization. Absorption/desorption experiments followed by UV-Vis spectroscopy demonstrate doxorubicin encapsulation within these films and polyamine-dependent drug release.
Collapse
Affiliation(s)
- Néstor A Pérez-Chávez
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina.
| | - Victor Nosthas Aguiar
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina.
| | - Juan A Allegretto
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina. and Universidad Nacional de San Martín (UNSAM), San Martín, Argentina
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina.
| | - Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina.
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina.
| |
Collapse
|
17
|
|
18
|
Switacz VK, Wypysek SK, Degen R, Crassous JJ, Spehr M, Richtering W. Influence of Size and Cross-Linking Density of Microgels on Cellular Uptake and Uptake Kinetics. Biomacromolecules 2020; 21:4532-4544. [DOI: 10.1021/acs.biomac.0c00478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Victoria K. Switacz
- Department of Chemosensation, Institute of Biology II, RWTH Aachen University, 52056 Aachen, Germany
| | - Sarah K. Wypysek
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Rudolf Degen
- Department of Chemosensation, Institute of Biology II, RWTH Aachen University, 52056 Aachen, Germany
| | - Jérôme J. Crassous
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute of Biology II, RWTH Aachen University, 52056 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
19
|
Li H, Zheng K, Yang J, Zhao J. Anomalous Diffusion Inside Soft Colloidal Suspensions Investigated by Variable Length Scale Fluorescence Correlation Spectroscopy. ACS OMEGA 2020; 5:11123-11130. [PMID: 32455234 PMCID: PMC7241028 DOI: 10.1021/acsomega.0c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The diffusion of molecules and particles inside the aqueous suspension of soft colloids (polymer microgels) is investigated using variable length scale fluorescence correlation spectroscopy (VLS-FCS). Carbopol 940 is chosen as the model matrix system, and two factors affecting diffusion are investigated: the spatial hindrance and the diffusant-matrix interaction. By studying diffusion of molecules and particles with different sizes inside the suspension, VLS-FCS reveals the restricted motion at a short length scale, that is, in the gaps between the microgels, and normal diffusion at a larger length scale. The information on the gap's length scale is also accessed. On the other hand, by tuning the pH value, the diffusant-matrix electrostatic attraction is adjusted and the results expose a short-time fast diffusion of probe molecules inside the gaps and a long-time restricted diffusion because of trapping inside the microgels. It is proved that VLS-FCS is a powerful method, investigating anomalous diffusion at different length scales and it is a promising approach to investigate diffusion in complex soft matter systems.
Collapse
Affiliation(s)
- Hengyi Li
- Beijing
National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaikai Zheng
- Beijing
National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfa Yang
- Beijing
National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Zhao
- Beijing
National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Landsgesell J, Hebbeker P, Rud O, Lunkad R, Košovan P, Holm C. Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00260] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| | - Pascal Hebbeker
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Oleg Rud
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Raju Lunkad
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| |
Collapse
|
21
|
Brito ME, Denton AR, Nägele G. Modeling deswelling, thermodynamics, structure, and dynamics in ionic microgel suspensions. J Chem Phys 2019; 151:224901. [DOI: 10.1063/1.5129575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mariano E. Brito
- Institute of Complex Systems, ICS-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Gerhard Nägele
- Institute of Complex Systems, ICS-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
22
|
Wypysek SK, Scotti A, Alziyadi MO, Potemkin II, Denton AR, Richtering W. Tailoring the Cavity of Hollow Polyelectrolyte Microgels. Macromol Rapid Commun 2019; 41:e1900422. [DOI: 10.1002/marc.201900422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/12/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Sarah K. Wypysek
- Institute of Physical ChemistryRWTH Aachen University 52056 Aachen Germany
| | - Andrea Scotti
- Institute of Physical ChemistryRWTH Aachen University 52056 Aachen Germany
| | | | - Igor I. Potemkin
- Physics DepartmentLomonosov Moscow State University Moscow 119991 Russian Federation
- DWI Leibniz Institute for Interactive Materials 52056 Aachen Germany
- Laboratory of Functional MaterialsNational Research South Ural State University Chelyabinsk 454080 Russian Federation
| | - Alan R. Denton
- Department of PhysicsNorth Dakota State University Fargo ND 58108‐6050 USA
| | - Walter Richtering
- Institute of Physical ChemistryRWTH Aachen UniversityJARA ‐ Soft Matter Science 52056 Aachen Germany
| |
Collapse
|
23
|
Li H, Mergel O, Jain P, Li X, Peng H, Rahimi K, Singh S, Plamper FA, Pich A. Electroactive and degradable supramolecular microgels. SOFT MATTER 2019; 15:8589-8602. [PMID: 31642835 DOI: 10.1039/c9sm01390c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we synthesized electroactive and degradable microgels based on biomacromolecular building blocks, which enable the controlled release of therapeutic drugs. Functional chitosan-poly(hydroquinone) (Ch:PHQ) microgels exhibiting redox-active and pH-sensitive properties were synthesized by an oxidative polymerization in an inverse miniemulsion system. Physically crosslinked microgels were formed by polymerization of hydroquinone in the presence of chitosan through the formation of hydrogen bonds between PHQ and Ch. A series of microgel samples with variable Ch : PHQ ratios were synthesized. These obtained microgels exhibit pH-responsive properties due to the protonation/deprotonation of amino-groups of chitosan in the microgel system. Poly(hydroquinone) is a redox-active polymer exhibiting a two-electron/proton-transfer behavior and conveys this property to the microgels as confirmed by cyclic voltammetry. In addition, the microgels can be switched by electrochemical means: they swell in the oxidized state or shrink in the reduced state. In the presence of urea or lysozyme, the microgels undergo a fast degradation due to the disruption of hydrogen bonds acting as physical crosslinks in the microgel networks or due to the cleavage of glucosidic linkages of the incorporated chitosan scaffold, respectively. Doxorubicin (DOX), an anticancer drug, could be effectively encapsulated into the microgels and released in the presence of an enzyme, indicating that these biodegradable microgels could be used as drug delivery vehicles for tumor cells.
Collapse
Affiliation(s)
- Helin Li
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Del Monte G, Ninarello A, Camerin F, Rovigatti L, Gnan N, Zaccarelli E. Numerical insights on ionic microgels: structure and swelling behaviour. SOFT MATTER 2019; 15:8113-8128. [PMID: 31589214 DOI: 10.1039/c9sm01253b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent progress has been made in the numerical modelling of neutral microgel particles with a realistic, disordered structure. In this work we extend this approach to the case of co-polymerised microgels where a thermoresponsive polymer is mixed with acidic groups. We compare the cases where counterions directly interact with microgel charges or are modelled implicitly through a Debye-Hückel description. We do so by performing extensive numerical simulations of single microgels across the volume phase transition (VPT) varying the temperature and the fraction of charged monomers. We find that the presence of charges considerably alters the microgel structure, quantified by the monomer density profiles and by the form factors of the microgels, particularly close to the VPT. We observe significant deviations between the implicit and explicit models, with the latter comparing more favourably to available experiments. In particular, we observe a shift of the VPT temperature to larger values as the amount of charged monomers increases. We also find that below the VPT the microgel-counterion complex is almost neutral, while it develops a net charge above the VPT. Interestingly, under these conditions the collapsed microgel still retains a large amount of counterions inside its structure. Since these interesting features cannot be captured by the implicit model, our results show that it is crucial to explicitly include the counterions in order to realistically model ionic thermoresponsive microgels.
Collapse
Affiliation(s)
- Giovanni Del Monte
- Physics Department, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy. and CNR-ISC, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy. and Center for Life NanoScience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Andrea Ninarello
- CNR-ISC, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy. and Physics Department, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy.
| | - Fabrizio Camerin
- CNR-ISC, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy. and Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, via A. Scarpa 14, 00161 Rome, Italy
| | - Lorenzo Rovigatti
- Physics Department, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy. and CNR-ISC, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy.
| | - Nicoletta Gnan
- CNR-ISC, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy. and Physics Department, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy.
| | - Emanuela Zaccarelli
- CNR-ISC, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy. and Physics Department, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy.
| |
Collapse
|
25
|
Minina ES, Sánchez PA, Likos CN, Kantorovich SS. Studying synthesis confinement effects on the internal structure of nanogels in computer simulations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Denton AR, Alziyadi MO. Osmotic pressure of permeable ionic microgels: Poisson-Boltzmann theory and exact statistical mechanical relations in the cell model. J Chem Phys 2019; 151:074903. [DOI: 10.1063/1.5091115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Mohammed O. Alziyadi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
27
|
Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6231-6255. [PMID: 30998365 DOI: 10.1021/acs.langmuir.8b04304] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanogels and microgels are soft, deformable, and penetrable objects with an internal gel-like structure that is swollen by the dispersing solvent. Their softness and the potential to respond to external stimuli like temperature, pressure, pH, ionic strength, and different analytes make them interesting as soft model systems in fundamental research as well as for a broad range of applications, in particular in the field of biological applications. Recent tremendous developments in their synthesis open access to systems with complex architectures and compositions allowing for tailoring microgels with specific properties. At the same time state-of-the-art theoretical and simulation approaches offer deeper understanding of the behavior and structure of nano- and microgels under external influences and confinement at interfaces or at high volume fractions. Developments in the experimental analysis of nano- and microgels have become particularly important for structural investigations covering a broad range of length scales relevant to the internal structure, the overall size and shape, and interparticle interactions in concentrated samples. Here we provide an overview of the state-of-the-art, recent developments as well as emerging trends in the field of nano- and microgels. The following aspects build the focus of our discussion: tailoring (multi)functionality through synthesis; the role in biological and biomedical applications; the structure and properties as a model system, e.g., for densely packed arrangements in bulk and at interfaces; as well as the theory and computer simulation.
Collapse
Affiliation(s)
- Matthias Karg
- Physical Chemistry I , Heinrich-Heine-University Duesseldorf , 40204 Duesseldorf , Germany
| | - Andrij Pich
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Functional and Interactive Polymers, Institute for Technical and Macromolecular Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry , Bielefeld University , 33615 Bielefeld , Germany
| | - Todd Hoare
- Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S 4L8 , Canada
| | - L Andrew Lyon
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | - J J Crassous
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | | | - Rustam A Gumerov
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
| | - Stefanie Schneider
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Igor I Potemkin
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
- National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| |
Collapse
|
28
|
Martín-Molina A, Quesada-Pérez M. A review of coarse-grained simulations of nanogel and microgel particles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Semenyuk P, Muronetz V. Protein Interaction with Charged Macromolecules: From Model Polymers to Unfolded Proteins and Post-Translational Modifications. Int J Mol Sci 2019; 20:E1252. [PMID: 30871103 PMCID: PMC6429204 DOI: 10.3390/ijms20051252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Interaction of proteins with charged macromolecules is involved in many processes in cells. Firstly, there are many naturally occurred charged polymers such as DNA and RNA, polyphosphates, sulfated glycosaminoglycans, etc., as well as pronouncedly charged proteins such as histones or actin. Electrostatic interactions are also important for "generic" proteins, which are not generally considered as polyanions or polycations. Finally, protein behavior can be altered due to post-translational modifications such as phosphorylation, sulfation, and glycation, which change a local charge of the protein region. Herein we review molecular modeling for the investigation of such interactions, from model polyanions and polycations to unfolded proteins. We will show that electrostatic interactions are ubiquitous, and molecular dynamics simulations provide an outstanding opportunity to look inside binding and reveal the contribution of electrostatic interactions. Since a molecular dynamics simulation is only a model, we will comprehensively consider its relationship with the experimental data.
Collapse
Affiliation(s)
- Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
30
|
Rovigatti L, Gnan N, Tavagnacco L, Moreno AJ, Zaccarelli E. Numerical modelling of non-ionic microgels: an overview. SOFT MATTER 2019; 15:1108-1119. [PMID: 30543246 PMCID: PMC6371763 DOI: 10.1039/c8sm02089b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 05/03/2023]
Abstract
Microgels are complex macromolecules. These colloid-sized polymer networks possess internal degrees of freedom and, depending on the polymer(s) they are made of, can acquire a responsiveness to variations of the environment (temperature, pH, salt concentration, etc.). Besides being valuable for many practical applications, microgels are also extremely important to tackle fundamental physics problems. As a result, these last years have seen a rapid development of protocols for the synthesis of microgels, and more and more research has been devoted to the investigation of their bulk properties. However, from a numerical standpoint the picture is more fragmented, as the inherently multi-scale nature of microgels, whose bulk behaviour crucially depends on the microscopic details, cannot be handled at a single level of coarse-graining. Here we present an overview of the methods and models that have been proposed to describe non-ionic microgels at different length-scales, from the atomistic to the single-particle level. We especially focus on monomer-resolved models, as these have the right level of details to capture the most important properties of microgels, responsiveness and softness. We suggest that these microscopic descriptions, if realistic enough, can be employed as starting points to develop the more coarse-grained representations required to investigate the behaviour of bulk suspensions.
Collapse
Affiliation(s)
- Lorenzo Rovigatti
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| | - Nicoletta Gnan
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| | - Letizia Tavagnacco
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| | - Angel J. Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC
,
Paseo Manuel de Lardizabal 5
, 20018 San Sebastián
, Spain
- Donostia International Physics Center
,
Paseo Manuel de Lardizabal 4
, 20018 San Sebastian
, Spain
| | - Emanuela Zaccarelli
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| |
Collapse
|
31
|
Landsgesell J, Nová L, Rud O, Uhlík F, Sean D, Hebbeker P, Holm C, Košovan P. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. SOFT MATTER 2019; 15:1155-1185. [PMID: 30706070 DOI: 10.1039/c8sm02085j] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This article recapitulates the state of the art regarding simulations of ionization equilibria of weak polyelectrolyte solutions and gels. We start out by reviewing the essential thermodynamics of ionization and show how the weak polyelectrolyte ionization differs from the ionization of simple weak acids and bases. Next, we describe simulation methods for ionization reactions, focusing on two methods: the constant-pH ensemble and the reaction ensemble. After discussing the advantages and limitations of both methods, we review the existing simulation literature. We discuss coarse-grained simulations of weak polyelectrolytes with respect to ionization equilibria, conformational properties, and the effects of salt, both in good and poor solvent conditions. This is followed by a discussion of branched star-like weak polyelectrolytes and weak polyelectrolyte gels. At the end we touch upon the interactions of weak polyelectrolytes with other polymers, surfaces, nanoparticles and proteins. Although proteins are an important class of weak polyelectrolytes, we explicitly exclude simulations of protein ionization equilibria, unless they involve protein-polyelectrolyte interactions. Finally, we try to identify gaps and open problems in the existing simulation literature, and propose challenges for future development.
Collapse
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, Stuttgart, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lu D, Zhu M, Wang W, Wu S, Saunders BR, Adlam DJ, Hoyland JA, Hofzumahaus C, Schneider S, Landfester K. Do the properties of gels constructed by interlinking triply-responsive microgels follow from those of the building blocks? SOFT MATTER 2019; 15:527-536. [PMID: 30444236 DOI: 10.1039/c8sm01510d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microgels (MGs) are swellable crosslinked polymer colloids. They can also be used as the only building block to construct nanostructured hydrogels which are denoted as doubly crosslinked microgels (DX MGs). Here, new triply responsive DX MGs comprised of interlinked MGs of oligo(ethylene glycol)methacrylate (OEGMA), 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA), methacrylic acid (MAA) and a o-nitrobenzyl-based UV photocleavable crosslinker are investigated. The MGs swelled or collapsed in response to temperature and pH changes. These behaviours were rationalised with a generic model using Monte Carlo simulations. The MGs also degraded when UV irradiated due to photocleavage of nPh. DX MGs were assembled from the MGs to give injectable gels that were not cytotoxic to nucleus pulposus cells. Comparison of the responsive properties of the DX MGs and MGs showed that the temperature and pH responses of the former were mostly governed by the latter. However, two key differences were found. Firstly, whilst increasing the crosslinker mol% in the MG building blocks (x) did not change MG particle swelling, the compression modulus (E) and swelling of the DX MG gels were strongly affected by x. The E value for the gels was tuneable using x which is a potentially useful new observation for DX MGs. Secondly, UV irradiation of the DX MGs enhanced gel mechanical photostability in contrast to the behaviour of the MGs. We find that the properties of the DX MGs do not simply follow those of the parent MGs and propose mechanisms to account for the differences. The new family of multi-responsive DX MGs presented in this study have potential application for soft tissue repair as injectable gels or as gel implants which report sterilisation.
Collapse
Affiliation(s)
- Dongdong Lu
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Mingning Zhu
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Wenkai Wang
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Shanglin Wu
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Brian R Saunders
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Daman J Adlam
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK and NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Cornelius Hofzumahaus
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
33
|
Sean D, Landsgesell J, Holm C. Influence of weak groups on polyelectrolyte mobilities. Electrophoresis 2019; 40:799-809. [PMID: 30645004 DOI: 10.1002/elps.201800346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 11/08/2022]
Abstract
The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectrolyte can vary depending on the proximity to topological features (e.g. presence of crosslinks or dangling ends). Using reaction-ensemble Monte-Carlo simulations we calculate the dissociation inhomogeneities for a few selected PE configurations, linear, rod-like, flexible four-arm star, and a star with stiff arms. An ensemble preaverage is used to obtain the annealed bare charge profile for these different polymer configurations. Using molecular dynamics simulations within a Lattice-Boltzman fluid, we investigate how the electrophoretic mobility is affected by the bare charge inhomogeneities arising from the annealed weak polyelectrolytes. Surprisingly, the mobility obtained for the situations corresponding to the predicted charge profile for annealed weak polyelectrolytes are not significantly different than the mobility obtained when all the monomers have an identical charge (under the constraint that the total polyelectrolyte bare charge is the same). This is also true for the stiff rod-like variants where conformational changes induced from the localization of the monomer charges are negligible. In salty solutions, we find that counterions are affected by the electric potential modulations induced by the topological features. Since the counterions crowd in regions where the electric potential caused by the dissociated monomers is highest, they wash-out the bare charge inhomogeneities and contribute to a more uniform effective backbone charge.
Collapse
Affiliation(s)
- David Sean
- Institute for Computational Physics, Universität Stuttgart, Stuttgart, Germany
| | - Jonas Landsgesell
- Institute for Computational Physics, Universität Stuttgart, Stuttgart, Germany
| | - Christian Holm
- Institute for Computational Physics, Universität Stuttgart, Stuttgart, Germany
| |
Collapse
|
34
|
Lošdorfer Božič A, Podgornik R. Anomalous multipole expansion: Charge regulation of patchy inhomogeneously charged spherical particles. J Chem Phys 2018; 149:163307. [DOI: 10.1063/1.5037044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Anže Lošdorfer Božič
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
35
|
Stornes M, Shrestha B, Dias RS. pH-Dependent Polyelectrolyte Bridging of Charged Nanoparticles. J Phys Chem B 2018; 122:10237-10246. [PMID: 30351110 DOI: 10.1021/acs.jpcb.8b06971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systems comprised of polyelectrolytes and charged nanoparticles are of great technological interest, being common components in formulations among other uses. The colloidal stability of formulations is an important issue, and thus a lot of effort has been made to study the interactions of individual components in these systems. Here, the complexation and adsorption of an annealed (pH-dependent) polyelectrolyte to two spherical nanoparticles has been studied using coarse-grained Monte Carlo simulations. This has been done mainly by varying the solution pH and separation distance (concentration) between the nanoparticles. The polyelectrolyte charge distribution is seen to vary with nanoparticle separation distance, and its ability to bridge both nanoparticles changes with pH. The flexible polyelectrolyte creates compact, multilink bridges at short nanoparticle separation distances and evolves to a stretched single-link bridge at longer distances, where a larger fraction of the polyelectrolyte wraps around the nanoparticles. The annealed polyelectrolyte is also compared with a quenched polyelectrolyte of similar fixed fractional charge. Here, a difference is found in the adsorption ability at low pH/ionization due to the ability of the annealed polyelectrolytes to concentrate charges in the vicinity of the nanoparticle. At intermediate polyelectrolyte charge fractions and with increasing nanoparticle separation distances, the annealed system is able to link nanoparticles at larger distances as compared to the quenched, in good agreement with experimental observations. The results in this work contribute to the understanding of the effect of annealed polyelectrolytes and pH variations in the phase behavior of polyelectrolyte-nanoparticle systems, potentially aiding in the design and optimization of pH-responsive systems.
Collapse
Affiliation(s)
- Morten Stornes
- Department of Physics , NTNU-Norwegian University of Science and Technology , NO-7491 Trondheim , Norway
| | - Binamra Shrestha
- Department of Physics , NTNU-Norwegian University of Science and Technology , NO-7491 Trondheim , Norway
| | - Rita S Dias
- Department of Physics , NTNU-Norwegian University of Science and Technology , NO-7491 Trondheim , Norway
| |
Collapse
|
36
|
Pérez-Chávez NA, Albesa AG, Longo GS. Using Polymer Hydrogels for Glyphosate Sequestration from Aqueous Solutions: Molecular Theory Study of Adsorption to Polyallylamine Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12560-12568. [PMID: 30247042 DOI: 10.1021/acs.langmuir.8b02727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A molecular theory has been applied to study the equilibrium conditions of glyphosate and aminomethylphosphonic acid (AMPA) adsorption from aqueous solutions to hydrogel films of cross-linked polyallylamine (PAH). This theoretical framework allows for describing the size, shape, state of charge/protonation, and configurational freedom of all chemical species in the system. Adsorption of glyphosate is a nonmonotonic function of the solution pH, which results from the protonation behavior of both the adsorbate and adsorbent material. Glyphosate and chloride ions compete for adsorption to neutralize the polymer charge; lowering the solution salt concentration enhances the partition of glyphosate inside the hydrogel film. AMPA adsorption is qualitatively similar to that of glyphosate but orders of magnitude smaller under the same conditions. AMPA is less charged than glyphosate, which unbalances the competition for adsorption with salt counter ions. In mixed solutions, glyphosate presence can significantly hinder AMPA adsorption. A higher pH establishes inside the film than in the bulk solution, which has important implications for the herbicide biodegradation because microbial activity is pH-dependent. Thus, PAH hydrogel films can be considered as functional materials that combine glyphosate sequestration and in situ degradation. In devising these materials, the polymer density is an important variable of design; polymer networks with high density of titratable units can enhance adsorption; this density can also be used to modify the pH inside the material.
Collapse
Affiliation(s)
- Néstor A Pérez-Chávez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET , Diag. 113 y 64 S/N , B1904 La Plata , Argentina
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET , Diag. 113 y 64 S/N , B1904 La Plata , Argentina
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET , Diag. 113 y 64 S/N , B1904 La Plata , Argentina
| |
Collapse
|
37
|
Hagemann A, Giussi JM, Longo GS. Use of pH Gradients in Responsive Polymer Hydrogels for the Separation and Localization of Proteins from Binary Mixtures. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Annika Hagemann
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Juan M. Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Gabriel S. Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
38
|
Basso J, Miranda A, Nunes S, Cova T, Sousa J, Vitorino C, Pais A. Hydrogel-Based Drug Delivery Nanosystems for the Treatment of Brain Tumors. Gels 2018; 4:E62. [PMID: 30674838 PMCID: PMC6209281 DOI: 10.3390/gels4030062] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy is commonly associated with limited effectiveness and unwanted side effects in normal cells and tissues, due to the lack of specificity of therapeutic agents to cancer cells when systemically administered. In brain tumors, the existence of both physiological barriers that protect tumor cells and complex resistance mechanisms to anticancer drugs are additional obstacles that hamper a successful course of chemotherapy, thus resulting in high treatment failure rates. Several potential surrogate therapies have been developed so far. In this context, hydrogel-based systems incorporating nanostructured drug delivery systems (DDS) and hydrogel nanoparticles, also denoted nanogels, have arisen as a more effective and safer strategy than conventional chemotherapeutic regimens. The former, as a local delivery approach, have the ability to confine the release of anticancer drugs near tumor cells over a long period of time, without compromising healthy cells and tissues. Yet, the latter may be systemically administered and provide both loading and targeting properties in their own framework, thus identifying and efficiently killing tumor cells. Overall, this review focuses on the application of hydrogel matrices containing nanostructured DDS and hydrogel nanoparticles as potential and promising strategies for the treatment and diagnosis of glioblastoma and other types of brain cancer. Some aspects pertaining to computational studies are finally addressed.
Collapse
Affiliation(s)
- João Basso
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
| | - Ana Miranda
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
| | - Sandra Nunes
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| | - Tânia Cova
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- LAQV REQUIMTE, Group of Pharmaceutical Technology, Porto 4051-401, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
- LAQV REQUIMTE, Group of Pharmaceutical Technology, Porto 4051-401, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| |
Collapse
|
39
|
Gelissen APH, Scotti A, Turnhoff SK, Janssen C, Radulescu A, Pich A, Rudov AA, Potemkin II, Richtering W. An anionic shell shields a cationic core allowing for uptake and release of polyelectrolytes within core-shell responsive microgels. SOFT MATTER 2018; 14:4287-4299. [PMID: 29774926 DOI: 10.1039/c8sm00397a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To realize carriers for drug delivery, cationic containers are required for anionic guests. Nevertheless, the toxicity of cationic carriers limits their practical use. In this study, we investigate a model system of polyampholyte N-isopropylacrylamide (NIPAM)-based microgels with a cationic core and an anionic shell to study whether the presence of a negative shell allows the cationic core to be shielded while still enabling the uptake and release of the anionic guest polyelectrolytes. These microgels are loaded with polystyrene sulfonate of different molecular weights to investigate the influence of their chain length on the uptake and release process. By means of small-angle neutron scattering, we evaluate the spatial distribution of polystyrene sulfonate within the microgels. The guest molecules are located in different parts of the core-shell microgels depending on their size. By combining these scattering results with UV-vis spectroscopy, electrophoretic mobility and potentiometric titrations we gain complementary results to investigate the uptake and release process of polyelectrolytes in polyampholyte core-shell microgels. Moreover, Brownian molecular dynamic simulations are performed to compare the experimental and theoretical results of this model. Our findings demonstrate that the presence of a shell still enables efficient uptake of guest molecules into the cationic core. These anionic guest molecules can be released through an anionic shell. Furthermore, the presence of a shell enhances the stability of the microgel-polyelectrolyte complexes with respect to the cationic precursor microgel alone.
Collapse
Affiliation(s)
- Arjan P H Gelissen
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|