1
|
Ma D, Ge J, Wang A, Li J, Yang H, Zhai W, Cai R. Ultrasensitive determination of α-glucosidase activity using CoOOH nanozymes and its application to inhibitor screening. J Mater Chem B 2023; 11:2727-2732. [PMID: 36880155 DOI: 10.1039/d2tb02580a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
In this work, a novel method for the colorimetric sensing of α-glucosidase (α-Glu) activity was developed based on CoOOH nanoflakes (NFs), which exhibit efficient oxidase-mimicking activity. Colorless 3,3',5,5'-tetramethylbenzidine (TMB) can be oxidized by CoOOH NFs into blue-colored oxidized TMB (oxTMB) in the absence of H2O2. L-Ascorbic acid-2-O-α-D-glucopyranose (AAG) can be hydrolysed by α-glucosidase to produce ascorbic acid, resulting in a significant decrease of catalytic activity of CoOOH NFs. Thus, a colorimetric α-glucosidase activity detection method was designed with a limit of detection of 0.0048 U mL-1. Furthermore, the designed sensing platform exhibits favorable applicability for the α-glucosidase (α-Glu) activity assay in real samples. Meanwhile, this method can be expanded to study the inhibitors of α-Glu. Finally, the as-proposed method combined with a smartphone would be a color recognizer, which was successfully applied for the determination of α-Glu activity in human serum samples.
Collapse
Affiliation(s)
- Demiao Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China.
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Jia Ge
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Ang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Yuan C, Qin X, Xu Y, Jing Q, Shi R, Wang Y. High sensitivity detection of H2O2 and glucose based on carbon quantum dots-catalyzed 3, 3′, 5, 5′-tetramethylbenzidine oxidation. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Diels-Alder Cycloaddition to the Bay Region of Perylene and Its Derivatives as an Attractive Strategy for PAH Core Expansion: Theoretical and Practical Aspects. Molecules 2020; 25:molecules25225373. [PMID: 33213037 PMCID: PMC7698498 DOI: 10.3390/molecules25225373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
PAHs (polycyclic aromatics hydrocarbons), the compound group that contains perylene and its derivatives, including functionalized ones, have attracted a great deal of interest in many fields of science and modern technology. This review presents all of the research devoted to modifications of PAHs that are realized via the Diels–Alder (DA) cycloaddition of various dienophiles to the bay regions of PAHs, leading to the π-extension of the starting molecule. This type of annulative π-extension (APEX) strategy has emerged as a powerful and efficient synthetic method for the construction of polycyclic aromatic hydrocarbons and their functionalized derivatives, nanographenes, and π-extended fused heteroarenes. Then, [4 + 2] cycloadditions of ethylenic dienophiles, -N=N-, i.e., diazo-dienophiles and acetylenic dienophiles, are presented. This subject is discussed from the organic synthesis point of view but supported by theoretical calculations. The possible applications of DA cycloaddition to PAH bay regions in various science and technology areas, and the prospects for the development of this synthetic method, are also discussed.
Collapse
|
4
|
Preparation of palladium/carbon dot composites as efficient peroxidase mimics for H2O2 and glucose assay. Anal Bioanal Chem 2019; 412:963-972. [DOI: 10.1007/s00216-019-02320-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 02/01/2023]
|
5
|
|
6
|
Jin R, Xing Z, Kong D, Yan X, Liu F, Gao Y, Sun P, Liang X, Lu G. Sensitive colorimetric sensor for point-of-care detection of acetylcholinesterase using cobalt oxyhydroxide nanoflakes. J Mater Chem B 2019; 7:1230-1237. [PMID: 32255162 DOI: 10.1039/c8tb02987c] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Point-of-care monitoring of acetylcholinesterase (AChE) is of significant importance for pesticide poisoning and disease diagnosis because it plays a pivotal role in biological nerve conduction systems. Herein, we designed a colorimetric strategy for the facile and accurate detection of AChE based on tandem catalysis with a multi-enzyme system, which is constituted by cobalt oxyhydroxide nanoflakes (CoOOH NFs) and choline oxidase (CHO). In this sensor, AChE catalytically hydrolyzed acetylcholine (ACh) to produce choline, which was further efficiently oxidized by CHO to yield H2O2. CoOOH NFs, as a nanozyme, efficiently catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxTMB with the help of H2O2, accompanied by an enhancement of absorbance intensity. The resulting intensity could be employed as the signal output of the CHO/CoOOH/ACh system in monitoring AChE. Under optimal conditions, the developed sensor possessed a sensitive response to AChE with a detection limit of 33 μU mL-1. Interestingly, the proposed platform was applied to fabricate a paper-based sensor for rapidly recognizing AChE by direct observation with the naked eyes. Combined with a smartphone and ImageJ software, we further developed an image-processing algorithm for the quantitative detection of AChE with highly promising results, which validated the outstanding potential of on-site application in clinical diagnostics and pesticide poisoning.
Collapse
Affiliation(s)
- Rui Jin
- State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H 2O 2 and ascorbic acid in a real sample. Anal Chim Acta 2018; 1054:145-156. [PMID: 30712585 DOI: 10.1016/j.aca.2018.12.024] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/17/2018] [Indexed: 11/21/2022]
Abstract
Herein, we were synthesized fluorescent carbon quantum dots via facile one-step hydrothermal treatment of mustard seeds (M-CQDs). It showed excellent optical property with fluorescent quantum yield 4.6%. The as-prepared M-CQDs exhibited peroxidase-like mimetic activity and catalyzed the oxidation of chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue color reaction mixture with the prominent peak at 652 nm. Furthermore, the peroxidase-like catalytic performance of M-CQDs followed the steady-state kinetics behavior and exhibited similar catalytic activity as that of natural enzyme Horseradish peroxidase (HRP). In addition to this, the double reciprocal plot showed a parallel line which suggested the occurrence of Ping-Pong type of mechanism. The H2O2 dependent oxidation of TMB was helpful for the colorimetric detection of H2O2 in the linear range of 0.02-0.20 mM with the limit of detection (LOD) of 0.015 mM. Interestingly, the oxidized TMB (ox-TMB) was further reduced to native TMB by the reducing agent ascorbic acid. Hence M-CQDs showed its potential towards the selective and sensitive detection of ascorbic acid in the linear range of 10-70 μM having a correlation coefficient of 0.998 with LOD of 3.26 μM. The practical feasibility of the proposed detection method of AA was also investigated in common fresh fruits.
Collapse
|
8
|
Singh VK, Yadav PK, Chandra S, Bano D, Talat M, Hasan SH. Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and their application in colorimetric detection of H 2O 2 and glutathione in human blood serum. J Mater Chem B 2018; 6:5256-5268. [PMID: 32254763 DOI: 10.1039/c8tb01286e] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interest is growing in the development of artificial enzymes to overcome the drawbacks of natural enzymes. Herein, we have synthesized nitrogen-sulphur dual-doped carbon quantum dots (NS-CQDs) via a one-step hydrothermal method; the NS-CQDs possess excellent optical properties and a high fluorescent quantum yield (46%). Significantly, the NS-CQDs exhibited peroxidase mimetic enzyme activity without support from metals or polymeric materials and efficiently catalyzed the oxidation of peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue solution with an absorption maximum at 652 nm. Mechanistic studies suggest that the small size and high electron density of NS-CQDs play vital roles and accelerate the reduction of H2O2 to generate ˙OH radical, which facilitates the oxidation of TMB. The catalytic activity is based on Michaelis-Menten kinetic behavior, and steady state kinetic analysis suggests that the NS-CQDs exhibit a higher affinity for H2O2 than TMB, similar to the natural enzyme horseradish peroxidase (HRP). Moreover, the catalytic pathway follows a ping-pong mechanism. Therefore, these findings offer a worthy platform for colorimetric detection of H2O2 in a linear range of 0.02 mM to 0.1 mM with a limit of detection of 0.004 mM. Interestingly, the blue colour of oxidized TMB showed excellent selectivity over non-thiolate biological molecules, especially amino acids, and glutathione can be detected up to 0.07 μM via colorimetric and fluorimetric assays. Additionally, this system showed excellent recovery (96.0-108.3%) of GSH from human blood serum. Thus, the proposed sensing system is simple, convenient, and straightforward and can be potentially applied for real time monitoring of H2O2 and glutathione in biological samples.
Collapse
Affiliation(s)
- Vikas Kumar Singh
- Nano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221005, UP, India.
| | | | | | | | | | | |
Collapse
|
9
|
Controlled synthesis of polydopamine: A new strategy for highly sensitive fluorescence turn-on detection of acetylcholinesterase activity. Mikrochim Acta 2018; 185:132. [DOI: 10.1007/s00604-018-2678-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
10
|
Dai H, Li Y, Zhang Q, Fu Y, Li Y. A colorimetric biosensor based on enzyme-catalysis-induced production of inorganic nanoparticles for sensitive detection of glucose in white grape wine. RSC Adv 2018; 8:33960-33967. [PMID: 35548829 PMCID: PMC9086867 DOI: 10.1039/c8ra06347h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/25/2018] [Indexed: 11/21/2022] Open
Abstract
Sensitive and selective colorimetric sensors have come into a high demand due to their simplicity, rapidity, precision and use of common laboratory instruments.
Collapse
Affiliation(s)
- Huang Dai
- College of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou 310058
- China
| | - Yuqing Li
- College of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou 310058
- China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou 310058
- China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou 310058
- China
| | - Yanbin Li
- College of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou 310058
- China
- Department of Biological and Agricultural Engineering
| |
Collapse
|