1
|
Zhang Y, Shi D, Wang W, Li W, Li W, Zhao L, Ma L, Peng Z, Sun X, Yang C. Injectable hydrogels embedded with chitosan nanoparticles coated with hyaluronic acid for sequential release of dual drugs. Int J Biol Macromol 2024; 256:128527. [PMID: 38040140 DOI: 10.1016/j.ijbiomac.2023.128527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
An effective treatment for some disease, such as the model disease acute retinal necrosis (ARN), requires a combination of different drugs which should be administered at a certain interval. The precise sequential and long-term drug release are the critical questions. In this work, the as-prepared chitosan nanoparticles (CS-NPs) coated with hyaluronic acid (HA) were embedded in the aldehyde β-cyclodextrin (ACD)/aminated hyaluronic acid (NHA) hydrogels to synthesize injectable hydrogels loaded with dual drugs named DEX-CS-NPs/GCV-Gel and HA-DEX-CS-NPs/GCV-Gel. In the first 24 h and 48 h, the releases of DEX from DEX-CS-NPs/GCV-Gel were 128.5 % and 82.8 % faster than those from HA-DEX-CS-NPs/GCV-Gel, respectively. There was no DEX released from HA-DEX-CS-NPs/GCV-Gel at the first 7 h, which has never been reported before, although some hydrogel systems loaded with different drugs release different drugs simultaneously at different rate which have been well studied. This is a good start of a precise sequence release. The composite hydrogels possessed appropriate rheology, gel time, degradation performance, and ideal cytocompatibility. The injectable hydrogel loaded with dual drugs presenting a precise sequential and long-term release has great potential in the treatment of diseases requiring combinations of drugs being released sequentially at different treating stages.
Collapse
Affiliation(s)
- Yongfei Zhang
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Depeng Shi
- Medical College of Qingdao University, Qingdao University, Qingdao, Shandong 266071, China
| | - Wenqian Wang
- Shangdong Dongyue Research Institute Co., Ltd., Zibo, Shandong 255000, China
| | - Weiyi Li
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Wenhui Li
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Lihua Zhao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266071, China
| | - Lichun Ma
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Zhi Peng
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Xianyong Sun
- Weifang Eye Institute, National Key Clinical Specialty, Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang, Shandong 261000, China.
| | - Chao Yang
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
2
|
Yin Y, Gu Q, Liu X, Liu F, McClements DJ. Double network hydrogels: Design, fabrication, and application in biomedicines and foods. Adv Colloid Interface Sci 2023; 320:102999. [PMID: 37783067 DOI: 10.1016/j.cis.2023.102999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023]
Abstract
Research on the design, fabrication, and application of double network (DN) hydrogels, assembled from pairs of polymers, has grown recently due to their unique structural, physicochemical, and functional properties. DN hydrogels can be designed to exhibit a broader range of functional attributes than single network (SN) ones, which extends their applications in various fields. There has been strong interest in the development of biopolymer DN hydrogels because of their environmental, sustainability, and safety benefits. However, there is limited knowledge on the formation and application of these novel materials. This article reviews the principles underlying the design and fabrication of hydrogels using different crosslinking approaches, including covalent and/or non-covalent bonding, and the formation mechanisms, network structures, and functional attributes of different DN hydrogels. The impact of polymer composition, structural organization, and bonding on the mechanical and functional properties of DN hydrogels is reviewed. Potential applications of these hydrogels are highlighted, including in tissue engineering, biomedicines, and foods. The functional attributes of DN hydrogels can be tailored to each of these applications by careful selection of the biopolymers and crosslinking mechanisms used to assemble them. Finally, areas where further research are needed to overcome the current limitations of DN hydrogels are highlighted.
Collapse
Affiliation(s)
- Yan Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingzhuo Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | | |
Collapse
|
3
|
Peng K, Liu X, Zhao H, Lu H, Lv F, Liu L, Huang Y, Wang S, Gu Q. 3D Bioprinting of Reinforced Vessels by Dual-Cross-linked Biocompatible Hydrogels. ACS APPLIED BIO MATERIALS 2021; 4:4549-4556. [PMID: 35006791 DOI: 10.1021/acsabm.1c00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
3D bioprinting offers a powerful tool to fabricate vessel channels in tissue engineering applications, but inadequate strength of the vascular walls limited the development of this strategy and reinforced channels were highly desired for vascular constructions. Herein, we demonstrated a dual cross-linking system for 3D bioprinting of tubular structures, achieved by a combination of photo-cross-linking and enzymatic cross-linking. Photo-cross-linking of gelatin methacryloyl (GelMA) was achieved with a photoactive conjugated polymer PBF under 550 nm irradiation. Enzymatic cross-linking utilized cascade reactions catalyzed by glucose peroxidase and horseradish peroxidase that can cross-link both methacrylate and tyrosine moieties of GelMA. After removing the 3D-printed sacrificial layer (Pluronic F-127), the obtained perfusable channels showed great biocompatibility that allowed endothelial cells to adhere and proliferate. Our dual cross-linking strategy has great potential in 3D bioprinting of tubular structure for biomedical applications, especially for artificial blood vessels.
Collapse
Affiliation(s)
- Ke Peng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huan Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qi Gu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
4
|
Zhu H, Mei X, He Y, Mao H, Tang W, Liu R, Yang J, Luo K, Gu Z, Zhou L. Fast and High Strength Soft Tissue Bioadhesives Based on a Peptide Dendrimer with Antimicrobial Properties and Hemostatic Ability. ACS APPLIED MATERIALS & INTERFACES 2019; 12:4241-4253. [PMID: 31859475 DOI: 10.1021/acsami.9b18720] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Haofang Zhu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Xingheng Mei
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yiyan He
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Hongli Mao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Wenbo Tang
- The Second Department of Hepato-Pancreato-Biliary Surgery, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| | - Rong Liu
- The Second Department of Hepato-Pancreato-Biliary Surgery, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, P.R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Lian Zhou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| |
Collapse
|
5
|
Martín C, Martín-Pacheco A, Naranjo A, Criado A, Merino S, Díez-Barra E, Herrero MA, Vázquez E. Graphene hybrid materials? The role of graphene materials in the final structure of hydrogels. NANOSCALE 2019; 11:4822-4830. [PMID: 30816371 DOI: 10.1039/c8nr09728c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Graphene (G), graphene oxide (GO) and graphene quantum dots (GQDs) have been introduced into a three-dimensional polymeric network based on polyacrylamide in order to ascertain the role of each nanomaterial in hydrogels. The hydrogel structure is not affected by the introduction of GQDs, since these nanoparticles do not form part of the polymeric network. G and GO modify the structure of the hydrogels but in a different way. GO seems to interact by hydrogen bonding to form non-homogeneous gels in which the mechanical properties are not markedly improved. However, G takes an active part in the formation of the polymeric network, which leads to improved mechanical properties and stability of the final material to give rise to truly hybrid hydrogels and not mere two-phase composite materials.
Collapse
Affiliation(s)
- Cristina Martín
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | | | | | | | | | | | | | | |
Collapse
|