1
|
Hui Y, Guo H, Liu Y, Zhang J, Xiao H. Two spirobifluene-based turn-on fluorescent probes for highly selective detection of Cysteine and the applications in cells two-photon fluorescence imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124342. [PMID: 38676981 DOI: 10.1016/j.saa.2024.124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/11/2023] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Two spirobifluene-based fluorescent probes SPF1 and SPF2, were designed and synthesized. The probes displayed "turn-on" fluorescence response for Cysteine. One of the challenges in developing a Cysteine probe is to secure high selectivity. SPF1/SPF2 can discriminate Cysteine from GSH as well as Hcy, and showed high substrate selectivity. The detection limit of SPF1 is 36 nM, which is excellent comparing with other optical sensors for Cysteine. The sensing mechanism of SPF1/SPF2 was verified by experimental data and theoretical calculations. There was a good linear relationship between the fluorescence intensity of SPF1/SPF2 and the concentration of Cysteine. The MTT tests indicated that SPF1/SPF2 had low cytotoxicity and good biocompatibility. Theoretical calculations demonstrated that SPF1, SPF2, and their related reaction products with Cysteine exhibited good two-photon absorption properties. Finally, SPF1/SPF2 had been successfully applied to the imaging of Cysteine in living cells under two-photon excitation.
Collapse
Affiliation(s)
- Yufeng Hui
- Department of chemistrys, Shanghai Normal University, Shanghai 200234 PR China
| | - Hongda Guo
- Department of chemistrys, Shanghai Normal University, Shanghai 200234 PR China
| | - Yeshen Liu
- Department of chemistrys, Shanghai Normal University, Shanghai 200234 PR China
| | - Ji Zhang
- Department of chemistrys, Shanghai Normal University, Shanghai 200234 PR China
| | - Haibo Xiao
- Department of chemistrys, Shanghai Normal University, Shanghai 200234 PR China.
| |
Collapse
|
2
|
Yue L, Ai Y, Liu G, Ding H, Pu S. A dual-response NIR fluorescent probe for separately and continuously recognizing H 2S and Cys with different fluorescence signals and its applications. Analyst 2023; 148:4829-4836. [PMID: 37622291 DOI: 10.1039/d3an00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Given the significant interactions between hydrogen sulfide (H2S) and cysteine (Cys) in organisms, a dual-site multi-purpose fluorescent probe (Cy-NP) for H2S and Cys was synthesized. Cy-NP is composed of two fluorophores: naphthalimide that emits in the visible region of 500-600 nm, and cyanine dye that emits in the NIR region of 700-800 nm. Cy-NP showed admirable sensitivity and selectivity for identifying H2S and Cys by fluorescent signals with limits of detection as low as 0.15 μM and 1.4 μM, respectively. Furthermore, other biological thiols (especially GSH and Hcy) showed no positive response to Cy-NP compared with H2S and Cys. The chemical mechanism of Cy-NP with H2S and Cys in DMF/PBS (1/1, v/v, pH = 7.4) solution was verified by HRMS and DFT calculations. Further, Cy-NP was successfully applied to monitor H2S released in raw meat and adapted to detect H2S and Cys in MCF-7 cells independently and continuously.
Collapse
Affiliation(s)
- Lisha Yue
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Yin Ai
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, P. R. China
| |
Collapse
|
3
|
Zhang J, Abdulkhaleq AMA, Wang J, Zhou X. Rational design of a novel acryl-modified CQDs fluorescent probe for highly selective detection and imaging of cysteine in vitro and in vivo. Mikrochim Acta 2023; 190:331. [PMID: 37501043 DOI: 10.1007/s00604-023-05919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
A novel fluorescent nanoprobe CQDs-O-Acryl has been designed and synthesized to directly and accurately identify Cys over other biothiols in PBS (10 mM, pH 7.4) buffer. The carbon quantum dots (CQDs-OH) (λex/em maxima = 495/525 nm) were fabricated by a solvothermal method using resorcinol as the carbon source. The CQDs-O-Acryl was achieved through covalently grafting the acryloyl group on the surface of carbon quantum dots by nuclear reaction based on static quenching. The structure and morphology of CQDs-OH and CQDs-O-Acryl have been characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and UV-vis absorption spectroscopy. Upon the addition of Cys, the ester bond of CQDs-O-Acryl has been broken, and the free CQDs were released by conjugated addition and cyclization reactions successively, emitting strong green fluorescence at 525 nm (λex = 495 nm). Under the optimized conditions, CQDs-O-Acryl exhibited good sensing of Cys within the range 0.095-16 μM (the LOD of 0.095 μM). Due to the high sensitivity, reliability, fast fluorescence response (10 min), and low toxicity of CQDs-O-Acryl, it was successfully applied to fluorescence imaging of Cys in A549 cells and zebrafish.
Collapse
Affiliation(s)
- Jie Zhang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | | | - Jun Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Xibin Zhou
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
| |
Collapse
|
4
|
Li Z, Jiang Y, Zhang H, Zhang Y, Li Z, Liu W, Chen C. Dicoumarin with dimethyl thiocarbamate in the fluorescent detecting for Au 3+ in water and cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122078. [PMID: 36371809 DOI: 10.1016/j.saa.2022.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Gold ions have high activity and cytotoxicity completely different from elemental gold. It is necessary and critical to develop Au3+ detection tools that are easy to operate, intuitive, inexpensive, and non-destructive testing. Here, we propose a novel two-photon fluorescent probe named DA for detecting Au3+, which is a rare combination of dicoumarin with dimethylthiocarbamate for the first time. Based on the PET mechanism, DA turns-on the fluorescence to yellow-green after specifically binds to Au3+, and the reaction is completed within 5 min. The detection limit is as low as 27.60 nM. Simultaneously, DA achieved qualitative and quantitative detection of Au3+ in environmental water samples, and fluorescence imaging of Au3+ in biological cells.
Collapse
Affiliation(s)
- Zhongguo Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Youhong Jiang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Huaqi Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yue Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhiying Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Weisheng Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Chunyang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
5
|
Li H, Han B, Ma H, Li R, Hou X, Zhang Y, Wang JJ. A "turn-on" inverse opal photonic crystal fluorescent sensing film for detection of cysteine and its bioimaging of living cells. Mikrochim Acta 2023; 190:49. [PMID: 36630016 DOI: 10.1007/s00604-022-05627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/17/2022] [Indexed: 01/12/2023]
Abstract
A "turn-on" inverse opal photonic crystal fluorescent sensing film infiltrated with a coumarin derivative is reported for the reliable and accurate detection of cysteine in human serum and fluorescence imaging of living cells. The coumarin derivative containing allyl ester specifically reacts with cysteine by ammonolysis to generate a fluorescent product whose emission wavelength is at ~ 535 nm, providing a selective fluorescence detection for cysteine. The emitted fluorescence is significantly enhanced due to the slow photon effect derived from the photonic crystal film. This is because the emission wavelength is overlapped with the blue-band edge of the photonic stopband of the selected inverse opal film. The fluorescence enhancement effect endows the prepared inverse opal film with highly sensitive detection with a limit of detection of 3.23 × 10-9 mol/L and a wide linear detection range of 1 × 10-7 - 1 × 10-3 mol/L. A fast response within 30 s toward cysteine is also achieved due to the three-dimensional interconnected macroporous structure with a high-specific surface area of the inverse opal film. The prepared inverse opal fluorescent sensing film has been successfully applied to the detection of cysteine in human serum and bioimaging of living cells. In the diluted human serum, the recoveries for the detection of cysteine were 97.92 - 107.20%, and the relative standard deviations were 2.61-9.04%, demonstrating the potential applicability of the inverse opal fluorescent sensing film to real sample analysis. The method may provide a universal strategy for constructing various photonic crystal fluorescent sensing films by using different fluorescent probes.
Collapse
Affiliation(s)
- Heng Li
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Bo Han
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Haojie Ma
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Ran Li
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Xueyan Hou
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Yuqi Zhang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China.
| | - Ji-Jiang Wang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| |
Collapse
|
6
|
Dagar N, Singh S, Raha Roy S. Synergistic Effect of Cerium in Dual Photoinduced Ligand-to-Metal Charge Transfer and Lewis Acid Catalysis: Diastereoselective Alkylation of Coumarins. J Org Chem 2022; 87:8970-8982. [PMID: 35759362 DOI: 10.1021/acs.joc.2c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the dual role of cerium to promote the photoinduced ligand-to-metal charge transfer (LMCT) process for the generation of the alkyl radical and subsequent Lewis acid catalysis to construct stereodefined C-C bonds. This paradigm utilized ubiquitous carboxylic acids as alkyl radical surrogates and offers excellent diastereoselectivity for the formation of C-4 alkylated coumarins in good to excellent yield. UV-vis spectroscopy studies in combination with in situ Fourier transform infrared spectroscopy are consistent with the proposed mechanism, supporting the participation of the CeIV-carboxylate complex in photoinduced LMCT and its subsequent homolysis to generate the alkyl radial through the exclusion of CO2. Finally, the oxophilicity of cerium enables a two-point complexation with the in situ generated enolate intermediate and facilitates the diastereoselective protonation to form the desired product. Furthermore, this mild and atom-economical catalytic manifolds allow the late-stage modification of pharmaceuticals.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
7
|
Kielesiński Ł, Deperasińska I, Morawski O, Vygranenko KV, Ouellette ET, Gryko DT. Polarized, V-Shaped, and Conjoined Biscoumarins: From Lack of Dipole Moment Alignment to High Brightness. J Org Chem 2022; 87:5961-5975. [PMID: 35410474 PMCID: PMC9087199 DOI: 10.1021/acs.joc.2c00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Eleven conjoined
coumarins possessing a chromeno[3,4-c]chromene-6,7-dione
skeleton have been synthesized via the reaction
of electron-rich phenols with esters of coumarin-3-carboxylic acids,
catalyzed by either Lewis acids or 4-dimethylaminopyridine. Furthermore,
Michael-type addition to angular benzo[f]coumarins
is possible, leading to conjugated helical systems. Arrangement of
the electron-donating amino groups at diverse positions on this heterocyclic
skeleton makes it possible to obtain π-expanded coumarins with
emission either sensitive to, or entirely independent of, solvent
polarity with large Stokes shifts. Computational studies have provided
a rationale for moderate solvatochromic effects unveiling the lack
of collinearity of the dipole moments in the ground and excited states.
Depending on the functional groups present, the obtained dyes are
highly polarized with dipole moments of ∼14 D in the ground
state and ∼20–25 D in the excited state. Strong emission
in nonpolar solvents, in spite of the inclusion of a NO2 group, is rationalized by the fact that the intramolecular charge
transfer introduced into these molecules is strong enough to suppress
intersystem crossing yet weak enough to prevent the formation of dark
twisted intramolecular charge transfer states. Photochemical transformation
of the dye possessing a chromeno[3,4-c]pyridine-4,5-dione
scaffold led to the formation of a spirocyclic benzo[g]coumarin.
Collapse
Affiliation(s)
- Łukasz Kielesiński
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Irena Deperasińska
- Institute of Physics of Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Olaf Morawski
- Institute of Physics of Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Kateryna V Vygranenko
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, 420 Latimer Hall, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel T Gryko
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
8
|
Wang D, Ma Z, Xi J, Wang N, Wang T, Liang Y, zhang Z. Synthesis of V‐shaped bis‐coumarins via Aldol reaction/double Lactonization cascade reaction from bis(2‐hydroxyphenyl)methanone and Meldrum's acid. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ding Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Zhishuang Ma
- Shaanxi Normal University Basic Experimental Teaching Center CHINA
| | - Jin Xi
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Nana Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Tao Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yong Liang
- Beckman Research Institute Department of molecular medicine CHINA
| | - zunting zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering West Chang'an Avenue, Chang'an District 710119 xi'an CHINA
| |
Collapse
|
9
|
Sarmah M, Chutia K, Dutta D, Gogoi P. Overview of coumarin-fused-coumarins: synthesis, photophysical properties and their applications. Org Biomol Chem 2021; 20:55-72. [PMID: 34854447 DOI: 10.1039/d1ob01876k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coumarin-fused-coumarins have attracted significant attention in the scientific world owing to their boundless applications in interdisciplinary areas. Various synthetic pathways have been developed to construct novel coumarin-fused-coumarin analogues by the fusion of modern methodologies with a classical Pechmann reaction or Knoevenagel condensation. Owing to their extended molecular framework, they possess interesting photophysical properties depending on the fused coumarin ring systems. This review highlights previously published reports on the synthetic strategies for structurally diverse coumarin-fused-coumarins. Furthermore, the scope of the synthesized biscoumarin-fused entities is described by highlighting their photophysical properties and applications.
Collapse
Affiliation(s)
- Manashi Sarmah
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
| | - Kangkana Chutia
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
| | - Dhiraj Dutta
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| |
Collapse
|
10
|
Mei H, Gu X, Wang M, Cai Y, Xu K. A novel cysteine fluorescent probe based on benzothiazole and quinoline with a large stokes shift and application in living cell and mice. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
She ZP, Wang WX, Mao GJ, Jiang WL, Wang ZQ, Li Y, Li CY. A near-infrared fluorescent probe for accurately diagnosing cancer by sequential detection of cysteine and H . Chem Commun (Camb) 2021; 57:4811-4814. [PMID: 33982685 DOI: 10.1039/d1cc01228b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A near-infrared fluorescent probe, CyAc, is synthesized for accurately diagnosing cancer in vivo by sequential detection of Cys and H+. CyAc can not only achieve a good distinction between normal cells and cancer cells, but also distinguish normal mice from tumor mice.
Collapse
Affiliation(s)
- Zun-Pan She
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Yuan L, Guo W, Fu Y, Zhang Z, Wang P, Wang J. A rapid colorimetric method for determining glutathione based on the reaction between cobalt oxyhydroxide nanosheets and 3,3′,5,5′-Tetramethylbenzidine. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Yan S, Guo H, Tan J, Jiang J, Liang J, Yan S, Xiao H. Two novel spirobifluorene-based two-photon fluorescent probes for the detection of hydrazine in solution and living cells. Talanta 2020; 218:121210. [DOI: 10.1016/j.talanta.2020.121210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/25/2023]
|
14
|
Yu LB, Hao XL, Zhang C, He TF, Ren AM. The theory of cysteine two-photon fluorescence probes of coumarinocoumarin derivatives and kinetics of ICT and PET mechanisms of probe molecules. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Recent advances in the development of responsive probes for selective detection of cysteine. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213182] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Chen C, Zhou L, Liu F, Li Z, Liu W, Liu W. V-shaped bis-coumarin based fluorescent probe for detecting palladium in natural waters. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121943. [PMID: 31884355 DOI: 10.1016/j.jhazmat.2019.121943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
A catalytic fluorescent probe based on V-shaped bis-coumarin has been designed and synthesized for detection of palladium (Pd). The detection mechanism of the probe is based on palladium-catalyzed Tsuji‒Trost reaction process and photoinduced electron transfer (PET), which can distinguish and detect palladium (0, +2/+4) in different valence states under different conditions. The fluorescence intensity of the probe enhances after adding the palladium in about 10 min at room temperature. The limit of detection (LOD) of the probe is as low as 40.0 nM (4.2 ng/g), and it has good selectivity and high sensitivity. Apart from that, it has been successfully applied to detection of palladium in environmental waters.
Collapse
Affiliation(s)
- Chunyang Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Longfei Zhou
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Feilong Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhongguo Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wei Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Zhao F, Zhai Z, Tang J, Zhang B, Yang X, Song X, Ye Y. A bond energy transfer based difunctional fluorescent sensor for Cys and bisulfite. Talanta 2020; 214:120884. [PMID: 32278439 DOI: 10.1016/j.talanta.2020.120884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
In living cells, cysteine (Cys) and bisulfite are involved in many important physiological processes. Their unbalance in vivo would lead to multiple diseases. So, it is vital to develop difuntional sensor for Cys and bisulfite. As we known, cysteine could metabolized into bisulfite by the metabolic processes of cysteine in the animal level. Therefore, we designed and synthesized a mitochondria-targeted long-wavelength ratio fluorescence sensor Z2 for Cys and bisulfite simultaneous detection. Z2 exhibitted excellent selectivity, good anti-interference, fast response and low detection limit. The sensor exhibited obviously two channels fluorescence response for Cys and bisulfite orderly. Z2 is widely used for imaging Cys and bisulfite in MCF-7 cells, zebrafish, and mice, and successfully imaging Cys metabolism in these livings. We hope this bifunctional ratio fluorescence sensor Z2 will be a useful tool to monitor Cys and SO2 levels in living systems.
Collapse
Affiliation(s)
- Fangfang Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhiyao Zhai
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Tang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Beibei Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaopeng Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
A diazabenzoperylene derivative as ratiometric fluorescent probe for cysteine with super large Stokes shift. Anal Bioanal Chem 2020; 412:2687-2696. [PMID: 32072211 DOI: 10.1007/s00216-020-02500-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
Biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play key roles in biological processes, and detecting such thiols selectively is critical for understanding functions of biothiols. In this work, a pyridazine annelated perylene-based fluorescent probe PAPC is synthesized for highly selective detection of Cys. PAPC exhibits strong blue emission in PBS, while the red emission at 605 nm can be observed in the presence of Cys. The probe PAPC shows ratiometric fluorescence (I605/I460) detection of Cys with wide linear range of 1-120 μM and low detection limit of 0.19 μM. Super large Stokes shift (170 nm) and ratiometric fluorescence endow the probe low background signal. The discrimination of Cys over Hcy and GSH can be achieved through the difference of the ratiometric fluorescence. In addition, the probe has been proven to track Cys in real samples such as urine and HeLa cells. Therefore, PAPC probe is a promising candidate for detecting Cys in practical application. Graphical abstract.
Collapse
|
19
|
Dang Y, Chen L, Yuan L, Li J, Chen D. A New Fluorescent Probe for Selective Detection of Endogenous Cysteine and Live Cell Imaging. ChemistrySelect 2020. [DOI: 10.1002/slct.201904093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yecheng Dang
- Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Li Chen
- Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Li Yuan
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Junbo Li
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan 430205 P. R. China
| |
Collapse
|
20
|
Tripathi KN, Belal M, Singh RP. Organo Photoinduced Decarboxylative Alkylation of Coumarins with N-(Acyloxy)phthalimide. J Org Chem 2019; 85:1193-1201. [DOI: 10.1021/acs.joc.9b00977] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Krishna N. Tripathi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Md. Belal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Ravi P. Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
21
|
Ji Y, Dai F, Zhou B. Developing a julolidine-fluorescein-based hybrid as a highly sensitive fluorescent probe for sensing and bioimaging cysteine in living cells. Talanta 2019; 197:631-637. [DOI: 10.1016/j.talanta.2019.01.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/05/2019] [Accepted: 01/19/2019] [Indexed: 12/11/2022]
|
22
|
Liao S, Li X, Yang H, Chen X. Nitrogen-doped carbon dots rapid and selective detection of mercury ion and biothiol and construction of an IMPLICATION logic gate. Talanta 2019; 194:554-562. [DOI: 10.1016/j.talanta.2018.09.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 09/30/2018] [Indexed: 11/28/2022]
|
23
|
Wang L, Qian Y. A novel quinoline-BODIPY fluorescent probe for fast sensing biothiols via hydrogen bonds assisted-deprotonation mechanism and its application in cells and zebrafish imaging. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Yang X, Qian Y. A near-infrared fluorescent probe for the discrimination of cysteine in pure aqueous solution and imaging of cysteine in hepatocellular carcinoma cells with facile cell-compatible ability. NEW J CHEM 2019. [DOI: 10.1039/c9nj00129h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A NIR fluorescence sensor for selectively detecting cysteine in aqueous solution with fast response and long emission wavelength was synthesized.
Collapse
Affiliation(s)
- Xin Yang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Ying Qian
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
25
|
Yang S, Guo C, Li Y, Guo J, Xiao J, Qing Z, Li J, Yang R. A Ratiometric Two-Photon Fluorescent Cysteine Probe with Well-Resolved Dual Emissions Based on Intramolecular Charge Transfer-Mediated Two-Photon-FRET Integration Mechanism. ACS Sens 2018; 3:2415-2422. [PMID: 30362710 DOI: 10.1021/acssensors.8b00919] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of an efficient ratiometric two-photon fluorescence imaging probe is crucial for in situ monitoring of biothiol cysteine (Cys) in biosystems, but the current reported intramolecular charge transfer (ICT)-based one suffers from serious overlap between the shifted emission bands. To address this issue, we herein for the first time constructed an ICT-mediated two-photon excited fluorescence resonance energy transfer (TP-FRET) system consisting of a two-photon fluorogen benzo[ h]chromene and a Cys-responsive benzoxadiazole-analogue dye. Different from a previous mechanism that utilized single two-photon fluorogen to acquire a ratiometric signal, ICT was used to switch on the TP-FRET process of the energy transfer dyad by eliciting an absorption shift of benzoxadiazole with Cys to modulate the spectral overlap level between benzo[ h]chromene emission and benzoxadiazole absorption, resulting in two well-separated emission signal changes with large emission wavelength shift (120 nm), fixed two-photon excitation maximum (750 nm), and significant variation in fluorescence ratio (over 36-fold). Therefore, it can be successfully employed to ratiometrically visualize Cys in HeLa cells and liver tissues. Importantly, this new ICT-mediated TP-FRET integration mechanism would be convenient for designing ratiometric two-photon fluorescent probes with two well-resolved emission spectra suitable for high resolution two-photon fluorescence bioimaging.
Collapse
Affiliation(s)
- Sheng Yang
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Chongchong Guo
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Yuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China
| | - Jingru Guo
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Jie Xiao
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Zhihe Qing
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Jiangsheng Li
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
26
|
Yang B, Xu J, Yuan ZH, Zheng DJ, He ZX, Jiao QC, Zhu HL. A new selective fluorescence probe with a quinoxalinone structure (QP-1) for cysteine and its application in live-cell imaging. Talanta 2018; 189:629-635. [DOI: 10.1016/j.talanta.2018.07.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023]
|
27
|
Yan F, Sun X, Zu F, Bai Z, Jiang Y, Fan K, Wang J. Fluorescent probes for detecting cysteine. Methods Appl Fluoresc 2018; 6:042001. [PMID: 30039804 DOI: 10.1088/2050-6120/aad580] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cysteine plays a crucial role in physiological processes. Therefore, it is necessary to develop a method for detecting cysteine. Fluorimetry has the advantages of convenient detection, short response time, high sensitivity and good selectivity. In this review, fluorescent probes that detect cysteine over the past three years are summarized based on structural features of fluorophores such as coumarin, BODIPY, rhodamine, fluorescein, CDs, QDs, etc and reaction groups including acrylate, aldehyde, halogen, 7-nitrobenzofurazan, etc. Then, effects of different combinations between fluorophores and response groups on probe properties and detection performances are discussed.
Collapse
|
28
|
A Hybrid Coumarin-Semifluorescein-Based Fluorescent Probe for the Detection of Cysteine. J Fluoresc 2018; 28:1059-1064. [PMID: 30066221 DOI: 10.1007/s10895-018-2269-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
A new type of turn-on fluorescent probe CF-AC for the detection of Cys was firstly reported. The probe exhibited an excellent response to Cys with high selectively and sensitivity. In the presence of Cys, two fluorescence emission peaks at 525 nm and 650 nm appeared accompanied by the fluorescence color change from blue to red. Morever, the probe had good biocompatibility and could be successfully used for fluorescence imaging of Cys in MCF-7 cells.
Collapse
|
29
|
Wang H, Zhang P, Tian Y, Zhang Y, Yang H, Chen S, Zeng R, Long Y, Chen J. Real-time monitoring of endogenous cysteine levels in living cells using a CD-based ratiometric fluorescent nanoprobe. Anal Bioanal Chem 2018; 410:4379-4386. [DOI: 10.1007/s00216-018-1091-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/15/2018] [Accepted: 04/16/2018] [Indexed: 12/24/2022]
|
30
|
Kang J, Huo F, Chao J, Yin C. Nitroolefin-based BODIPY as a novel water-soluble ratiometric fluorescent probe for detection of endogenous thiols. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:16-20. [PMID: 29358092 DOI: 10.1016/j.saa.2018.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Small molecule biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play many crucial roles in physiological processes. In this work, we have prepared a nitroolefin-based BODIPY fluorescent probe with excellent water solubility for detection thiols, which displayed ratiometric fluorescent signal for thiols. Incorporation of a nitroolefin unit to the BODIPY dye would transform it into a strong Michael acceptor, which would be highly susceptible to sulfhydryl nucleophiles. This probe shows an obvious ratio change upon response with thiols, an increase of the emission at 517 nm along with a concomitant decrease of fluorescence peak at 573 nm. Moreover, these successes of intracellular imaging experiments in A549 cells indicated that this probe is suitable for imaging of ex-/endogenous thiols in living cells.
Collapse
Affiliation(s)
- Jin Kang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| | - Jianbin Chao
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
31
|
Gao S, Tang Y, Lin W. Development of a two-photon turn-on fluorescent probe for cysteine and its bio-imaging applications in living cells, tissues, and zebrafish. NEW J CHEM 2018. [DOI: 10.1039/c8nj03185a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A two-photon fluorescent probe Co-Cys for detecting cysteine has been designed to monitor cysteine in cells, tissues and zebrafish.
Collapse
Affiliation(s)
- Shiying Gao
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan
- Jinan
- P. R. China
| | - Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan
- Jinan
- P. R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan
- Jinan
- P. R. China
| |
Collapse
|
32
|
Wang Y, Meng Q, Han Q, He G, Hu Y, Feng H, Jia H, Zhang R, Zhang Z. Selective and sensitive detection of cysteine in water and live cells using a coumarin–Cu2+ fluorescent ensemble. NEW J CHEM 2018. [DOI: 10.1039/c8nj03809k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A coumarin–Cu2+ ensemble based fluorescent chemosensor was developed for the selective detection of cysteine in aqueous media and live cells.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Qingtao Meng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
- Key Laboratory for Functional Material
| | - Qian Han
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Guangjie He
- Department of Forensic Medicine
- Xinxiang Medical University
- XinXiang
- P. R. China
| | - Yaoyun Hu
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Huan Feng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Hongmin Jia
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material
- Educational Department of Liaoning Province
- University of Science and Technology Liaoning
- Anshan 114051
- P. R. China
| |
Collapse
|
33
|
Yang X, Qian Y. A NIR facile, cell-compatible fluorescent sensor for glutathione based on Michael addition induced cascade spirolactam opening and its application in hepatocellular carcinoma. J Mater Chem B 2018; 6:7486-7494. [DOI: 10.1039/c8tb02309c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A NIR fluorescence probe with NIR emission wavelength at 746 nm and high quantum yield of 0.36 was designed and synthesized to selectively detect GSH over Hcy and Cys in living systems.
Collapse
Affiliation(s)
- Xin Yang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Ying Qian
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
34
|
Chen Q, Jia C, Zhang Y, Du W, Wang Y, Huang Y, Yang Q, Zhang Q. A novel fluorophore based on the coupling of AIE and ESIPT mechanisms and its application in biothiol imaging. J Mater Chem B 2017; 5:7736-7742. [DOI: 10.1039/c7tb02076g] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel fluorophore TPE-HBT was designed based on the intersection of tetraphenylethene (TPE) and 2-(2′-hydroxyphenyl)benzothiazole (HBT).
Collapse
Affiliation(s)
- Qing Chen
- Hainan Provincial Key Lab of Fine Chemistry
- Hainan University
- Haikou
- China
| | - Chunman Jia
- Hainan Provincial Key Lab of Fine Chemistry
- Hainan University
- Haikou
- China
- Key Study Center of the National Ministry of Education for Tropical Resources Utilization
| | - Yinfeng Zhang
- Department of Pathology
- Johns Hopkins University School of Medicine
- Baltimore
- USA
| | - Wei Du
- Hainan Provincial Key Lab of Fine Chemistry
- Hainan University
- Haikou
- China
| | - Yile Wang
- Hainan Provincial Key Lab of Fine Chemistry
- Hainan University
- Haikou
- China
| | - Yan Huang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Qiuyun Yang
- Hainan Provincial Key Lab of Fine Chemistry
- Hainan University
- Haikou
- China
| | - Qi Zhang
- Hainan Provincial Key Lab of Fine Chemistry
- Hainan University
- Haikou
- China
- Key Study Center of the National Ministry of Education for Tropical Resources Utilization
| |
Collapse
|