1
|
García-Castro M, Fuentes-Rios D, López-Romero JM, Romero A, Moya-Utrera F, Díaz-Morilla A, Sarabia F. n-Tuples on Scaffold Diversity Inspired by Drug Hybridisation to Enhance Drugability: Application to Cytarabine. Mar Drugs 2023; 21:637. [PMID: 38132958 PMCID: PMC10744741 DOI: 10.3390/md21120637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
A mathematical concept, n-tuples are originally applied to medicinal chemistry, especially with the creation of scaffold diversity inspired by the hybridisation of different commercial drugs with cytarabine, a synthetic arabinonucleoside derived from two marine natural products, spongouridine and spongothymidine. The new methodology explores the virtual chemical-factorial combination of different commercial drugs (immunosuppressant, antibiotic, antiemetic, anti-inflammatory, and anticancer) with the anticancer drug cytarabine. Real chemical combinations were designed and synthesised for 8-duples, obtaining a small representative library of interesting organic molecules to be biologically tested as proof of concept. The synthesised library contains classical molecular properties regarding the Lipinski rules and/or beyond rules of five (bRo5) and is represented by the covalent combination of the anticancer drug cytarabine with ibuprofen, flurbiprofen, folic acid, sulfasalazine, ciprofloxacin, bortezomib, and methotrexate. The insertion of specific nomenclature could be implemented into artificial intelligence algorithms in order to enhance the efficiency of drug-hunting programs. The novel methodology has proven useful for the straightforward synthesis of most of the theoretically proposed duples and, in principle, could be extended to any other central drug.
Collapse
Affiliation(s)
- Miguel García-Castro
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | | | | | | | | | | | | |
Collapse
|
2
|
Hlavatovičová E, Fernandez-Alvarez R, Byś K, Kereïche S, Mandal TK, Atanase LI, Štěpánek M, Uchman M. Stimuli-Responsive Triblock Terpolymer Conversion into Multi-Stimuli-Responsive Micelles with Dynamic Covalent Bonds for Drug Delivery through a Quick and Controllable Post-Polymerization Reaction. Pharmaceutics 2023; 15:pharmaceutics15010288. [PMID: 36678912 PMCID: PMC9867120 DOI: 10.3390/pharmaceutics15010288] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Stimuli-responsive copolymers are of great interest for targeted drug delivery. This study reports on a controllable post-polymerization quaternization with 2-bromomethyl-4-fluorophenylboronic acid of the poly(4-vinyl pyridine) (P4VP) block of a common poly(styrene)-b-poly(4-vinyl pyridine)-b-poly(ethylene oxide) (SVE) triblock terpolymer in order to achieve a selective responsivity to various diols. For this purpose, a reproducible method was established for P4VP block quaternization at a defined ratio, confirming the reaction yield by 11B, 1H NMR. Then, a reproducible self-assembly protocol is designed for preparing stable micelles from functionalized stimuli-responsive triblock terpolymers, which are characterized by light scattering and by cryogenic transmission electron microscopy. In addition, UV-Vis spectroscopy is used to monitor the boron-ester bonding and hydrolysis with alizarin as a model drug and to study encapsulation and release of this drug, induced by sensing with three geminal diols: fructose, galactose and ascorbic acid. The obtained results show that only the latter, with the vicinal diol group on sp2-hybridized carbons, was efficient for alizarin release. Therefore, the post-polymerization method for triblock terpolymer functionalization presented in this study allows for preparation of specific stimuli-responsive systems with a high potential for targeted drug delivery, especially for cancer treatment.
Collapse
Affiliation(s)
- Eva Hlavatovičová
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| | - Roberto Fernandez-Alvarez
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| | - Katarzyna Byś
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| | - Sami Kereïche
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 12801 Prague, Czech Republic
| | - Tarun K. Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Correspondence: (L.I.A.); (M.Š.); (M.U.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
- Correspondence: (L.I.A.); (M.Š.); (M.U.)
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
- Correspondence: (L.I.A.); (M.Š.); (M.U.)
| |
Collapse
|
3
|
Kim A, Suzuki Y, Nagasaki Y. Molecular design of a high-performance polymeric carrier for delivery of a variety of boronic acid-containing drugs. Acta Biomater 2021; 121:554-565. [PMID: 33321218 DOI: 10.1016/j.actbio.2020.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
Because of their many useful and unique properties, boronic acids are well suited for biomedical applications such as antitumor chemotherapy and boron neutron capture therapy (BNCT). Bortezomib, a boronic acid derivative, has drawn a lot of attention as a potent proteasome inhibitor. Nevertheless, because of rapid excretion and off-target effects, the clinical translation of boronic acid-containing drugs is limited. To this end, we employed a polymeric carrier to stably encapsulate boronic acid-containing drugs and achieve superior pharmacokinetics with an on-target drug release capability. Accordingly, to construct a supramolecular polymeric nanoparticle, we took advantage of the facile, stable, and pH-sensitive conjugation between boronic acids and diethanolamine-installed polymeric carriers. We demonstrated the feasibility of our molecular design by generating and applying bortezomib-loaded nanoparticles to a subcutaneous tumor-bearing mouse model. Stable encapsulation and pH-sensitive release of bortezomib facilitated antitumor efficacy and alleviated hepatotoxicity. We also verified the versatility of our approach through biological evaluations of the nanoparticles encapsulating benzo(b)thiophene-2-boronic acid, phenylboronic acid, and p-phenylene-diboronic acid.
Collapse
|
4
|
Allahyari S, Valizadeh H, Zakeri-Milani P. Polymeric Nanoparticles and Their Novel Modifications for Targeted Delivery of Bortezomib. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bortezomib (BTZ) as a specific proteasome inhibitor is used to inhibit proliferation and migration of tumor cell in variety of cancers. Targeted delivery of this drug not only would minimize its unwanted side effects but also might improve its efficacy. This purpose could be gotten through different pathways but using efficient carriers may be the best one without using any additional ingredients/ materials. Some polymer based nanoparticles with specific functional groups have the ability to interact with boronic acid moiety in BTZ. This reaction might play an important role not only in cancer targeting therapy but also in loading and release properties of this drug. Novel modification such as making multifunctional or pH-sensitive nanocarriers, may also improve anticancer effect of BTZ. This review might have remarkable effect on researchers’ consideration about other possible interactions between BTZ and polymeric nanocarriers that might have great effect on its remedy pathway. It has the ability to brought bright ideas to their minds for novel amendments about other drugs and delivery systems.
Collapse
Affiliation(s)
- Saeideh Allahyari
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Allahyari S, Valizadeh H, Roshangar L, Mahmoudian M, Trotta F, Caldera F, Jelvehgari M, Zakeri-Milani P. Preparation and characterization of cyclodextrin nanosponges for bortezomib delivery. Expert Opin Drug Deliv 2020; 17:1807-1816. [PMID: 32729739 DOI: 10.1080/17425247.2020.1800637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bortezomib (BTZ) as an anticancer drug has been used through the injection pathway. RESEARCH DESIGN AND METHODS Two types of Cyclodextrin nanosponges (CDNSs) were synthesized and studied by DLS, TEM, FTIR, and DSC instruments for BTZ delivery. Both carriers were analyzed for loading efficiencies and in-vitro release. Cell studies and intestinal permeability of selected CDNS were determined using MTT and SPIP method, respectively. RESULTS Both types of CDNSs, encapsulated BTZ in their nano-porous structure, but better loading was shown in CDNS 1:4. FTIR and DSC results proved considerable encapsulation of BTZ into CDNSs. The slow and prolonged release profile was observed for CDNS 1:4 in comparison with CDNS 1:2. Based on in-vitro results, BTZ-CDNS 1:4 was chosen as a selected nanosystem for further analysis. This nontoxic carrier revealed considerable uptake (93.9% in 3 h) against the MCF-7 cell line but indicated higher IC50 in comparison with the plain drug. This carrier also could improve the rat intestinal permeability of BTZ almost 5.8 times. CONCLUSION CDNS 1:4 has the ability to be introduced as a nontoxic carrier for BTZ delivery with its high loading, controlled release manner, high cellular uptake, and permeability improvement characteristics.
Collapse
Affiliation(s)
- Saeideh Allahyari
- Faculty of Pharmacy, Tabriz University of Medical Science , Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Science , Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science , Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science , Tabriz, Iran
| | | | | | | | - Mitra Jelvehgari
- Faculty of Pharmacy, Tabriz University of Medical Science , Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
6
|
Zhang C, Wang X, Cheng R, Zhong Z. A6 Peptide-Tagged Core-Disulfide-Cross-Linked Micelles for Targeted Delivery of Proteasome Inhibitor Carfilzomib to Multiple Myeloma In Vivo. Biomacromolecules 2020; 21:2049-2059. [DOI: 10.1021/acs.biomac.9b01790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Changjiang Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xiuxiu Wang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
7
|
Korani M, Korani S, Zendehdel E, Nikpoor AR, Jaafari MR, Orafai HM, Johnston TP, Sahebkar A. Enhancing the Therapeutic Efficacy of Bortezomib in Cancer Therapy Using Polymeric Nanostructures. Curr Pharm Des 2020; 25:4883-4892. [DOI: 10.2174/1381612825666191106150018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
:
Bortezomib (VELCADE®) is a boronate peptide and first-in-class proteasome inhibitor serving an
important role in degenerating several intracellular proteins. It is a reversible inhibitor of the 26S proteasome,
with antitumor activity and antiproliferative properties. This agent principally exerts its antineoplastic effects by
inhibiting key players in the nuclear factor κB (NFκB) pathway involved in cell proliferation, apoptosis, and
angiogenesis. This medication is used in the management of multiple myeloma. However, more recently, it has
been used as a therapeutic option for mantle cell lymphoma. While promising, bortezomib has limited clinical
applications due to its adverse effects (e.g., hematotoxicity and peripheral neuropathy) and low effectiveness in
solid tumors resulting from its poor penetration into such masses and suboptimal pharmacokinetic parameters.
Other limitations to bortezomib include its low chemical stability and bioavailability, which can be overcome by
using nanoparticles for its delivery. Nanoparticle delivery systems can facilitate the targeted delivery of chemotherapeutic
agents in high doses to the target site, while sparing healthy tissues. Therefore, this drug delivery
system has provided a solution to circumvent the limitations faced with the delivery of traditional cancer chemotherapeutic
agents. Our aim in this review was to describe polymer-based nanocarriers that can be used for the
delivery of bortezomib in cancer chemotherapy.
Collapse
Affiliation(s)
- Mitra Korani
- Nanotechnology Research Center, Buali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Zendehdel
- Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amin Reza Nikpoor
- Department of Pharmaceutics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein M. Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri- Kansas City, Kansas City, Missouri, United States
| | | |
Collapse
|
8
|
Mahmoudian M, Valizadeh H, Löbenberg R, Zakeri-Milani P. Enhancement of the intestinal absorption of bortezomib by self-nanoemulsifying drug delivery system. Pharm Dev Technol 2019; 25:351-358. [DOI: 10.1080/10837450.2019.1699109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Mahmoudian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Parvin Zakeri-Milani
- Faculty of Pharmacy, Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Pu Y, Zhang H, Peng Y, Fu Q, Yue Q, Zhao Y, Guo L, Wu Y. Dual-targeting liposomes with active recognition of GLUT5 and αvβ3 for triple-negative breast cancer. Eur J Med Chem 2019; 183:111720. [DOI: 10.1016/j.ejmech.2019.111720] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/24/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
|
10
|
Xiaoyu M, Xiuling D, Chunyu Z, Yi S, Jiangchao Q, Yuan Y, Changsheng L. Polyglutamic acid-coordinated assembly of hydroxyapatite nanoparticles for synergistic tumor-specific therapy. NANOSCALE 2019; 11:15312-15325. [PMID: 31386744 DOI: 10.1039/c9nr03176f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanotechnology offers exciting and innovative therapeutic strategies in the fight against cancer. Nano-scale hydroxyapatite, the inorganic constituent of the hard tissues of humans and animals, is not only an ideal carrier for the delivery of drugs but also exerts selective inhibitory effects on tumor cells. To perform the dual functions, we propose polyglutamic acid-coordinated hydroxyapatite nanoparticles (HA-PGA NP) as both DOX delivery vehicle and sustained calcium flow supplier to achieve a synergistic, tumor-specific therapy in this study. With PGA as the coordinator, the HA-PGA NPs were easily assembled into spherical nano-clusters with low crystallinity. The excellent dispersibility and solubility in the tumor environment endowed the HA-PGA NPs with an improved internalization into the tumor cells, thereby causing a dramatic elevation in the intracellular calcium influx by about 40%, which further induced a cascade of mitochondrial membrane damage, ATP content reduction, and reinforced sensitivity to chemotherapy. After the encapsulation of the model drug DOX, a pH-responsive release profile was achieved via the degradation of the nanoparticles and the deprotonation of PGA in the acidic tumor micro-environment. Consequently, the hybrid system, with the synergistic effects of sustained DOX and calcium overload, exhibited selectively intensified toxicity to tumor cells. The in vivo test further confirmed that the current system exhibited highly selective tumor inhibition and reduced heart toxicity, thus representing an effective anti-tumor platform.
Collapse
Affiliation(s)
- Ma Xiaoyu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Sun H, Dong Y, Feijen J, Zhong Z. Peptide-decorated polymeric nanomedicines for precision cancer therapy. J Control Release 2018; 290:11-27. [DOI: 10.1016/j.jconrel.2018.09.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 01/12/2023]
|
12
|
Gu Z, Wang X, Cheng R, Cheng L, Zhong Z. Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma. Acta Biomater 2018; 80:288-295. [PMID: 30240956 DOI: 10.1016/j.actbio.2018.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/21/2022]
Abstract
Bortezomib (BTZ) provides one of the best treatments for multiple myeloma (MM). The efficacy of BTZ is, nevertheless, restricted by its fast clearance, low selectivity, and dose limiting toxicities. Here, we report on targeted BTZ therapy of MM in vivo by hyaluronic acid-shelled and core-disulfide-crosslinked biodegradable micelles (HA-CCMs) encapsulating lipophilized BTZ, bortezomib-pinanediol (BP). HA-CCMs loaded with 7.3 BTZ equiv. wt% exhibited a small size of 78 nm, good stability in 10% FBS, and glutathione-triggered drug release. MTT assays in CD44 positive LP-1 multiple myeloma cells revealed that BP encapsulated in HA-CCMs caused enhanced antiproliferative effect compared with free BP. Flow cytometry, confocal microscopy and MTT assays indicated BP-loaded HA-CCMs (HA-CCMs-BP) could actively target to LP-1 cells and induce high antitumor effect. Proteasome activity assays in vitro showed HA-CCMs-BP had a similar proteasome activity inhibition as compared to free BTZ at 18 h. The fluorescence imaging using Cy5-labeled HA-CCMs showed that HA-CCMs had a long elimination half-life and enhanced tumor accumulation via HA-mediated uptake mechanism. The therapeutic studies in LP-1 MM-bearing mice revealed better treatment efficacy of HA-CCMs-BP compared with free BTZ, in which HA-CCMs-BP at 3 mg BTZ equiv./kg brought about significant tumor growth inhibition and survival benefits. Loading of lipophilized BTZ into HA-shelled multifunctional micelles has emerged as an exciting approach for bortezomib therapy of MM. STATEMENT OF SIGNIFICANCE: Multiple myeloma (MM) is the second most common hematological malignancy. Bortezomib (BTZ), a potent proteasome inhibitor, provides one of the best treatments for MM. The clinical efficacy of BTZ is, however, limited by its quick clearance, poor selectivity, and significant side effects including myelosuppression and peripheral neuropathy. Here, we report on targeted BTZ therapy of MM in vivo by hyaluronic acid-shelled and core-disulfide-crosslinked biodegradable micelles (HA-CCMs) encapsulating lipophilized BTZ, bortezomib-pinanediol (BP). Our results showed that BP-loaded HA-CCMs exhibit markedly enhanced toleration, broadened therapeutic window, and significantly more effective growth suppression of CD44-overexpressed multiple myeloma in nude mice than free bortezomib. Lipophilized BTZ-loaded HA-CCMs has opened a new avenue for targeted bortezomib therapy of multiple myeloma.
Collapse
Affiliation(s)
- Zhaoxin Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiuxiu Wang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Liang Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China; Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
13
|
Yao P, Zhang Y, Meng H, Sun H, Zhong Z. Smart Polymersomes Dually Functionalized with cRGD and Fusogenic GALA Peptides Enable Specific and High-Efficiency Cytosolic Delivery of Apoptotic Proteins. Biomacromolecules 2018; 20:184-191. [DOI: 10.1021/acs.biomac.8b01243] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Peili Yao
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hao Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
14
|
Controlled construction of gold nanoparticles in situ from β-cyclodextrin based unimolecular micelles for in vitro computed tomography imaging. J Colloid Interface Sci 2018; 528:135-144. [DOI: 10.1016/j.jcis.2018.05.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022]
|
15
|
Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018; 132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/21/2018] [Accepted: 05/12/2018] [Indexed: 01/08/2023]
Abstract
The development of smart delivery systems that are robust in circulation and quickly release drugs following selective internalization into target cancer cells is a key to precision cancer therapy. Interestingly, reduction-sensitive polymeric nanomedicines showing high plasma stability and triggered cytoplasmic drug release behavior have recently emerged as one of the most exciting platforms for targeted delivery of various anticancer drugs including small chemical drugs, proteins, and nucleic acids. In vivo studies in varying tumor models reveal that these reduction-sensitive multifunctional nanomedicines outperform the currently used clinical formulations and reduction-insensitive counterparts, bringing about not only significantly enhanced tumor selectivity, accumulation and inhibition efficacy but also markedly reduced systemic toxicity and improved therapeutic index. In this review, we will highlight the cutting-edge advancement with a focus on in vivo performances as well as future perspectives on reduction-sensitive polymeric nanomedicines for targeted cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
16
|
Murugan C, Venkatesan S, Kannan S. Cancer Therapeutic Proficiency of Dual-Targeted Mesoporous Silica Nanocomposite Endorses Combination Drug Delivery. ACS OMEGA 2017; 2:7959-7975. [PMID: 30023569 PMCID: PMC6044612 DOI: 10.1021/acsomega.7b00978] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/19/2017] [Indexed: 05/25/2023]
Abstract
The cargo-loaded mesoporous silica nanoparticles (MSNs) with convenient surface modification can facilitate the development of the innovative nanodrug system. Herein, the present investigation described the electrostatically self-assembled MSNs as a nanosized drug carrier to realize potent synergistic chemotherapy based on the specificity in targeting cytoplasm and nucleus of tumor cells. In this context, the primarily constructed MSNs were subjected with anticancer drug topotecan (TPT) into its large pores. Then, the selective TAT peptide (a nuclear localization signal peptide) was anchored onto TPT-loaded MSNs (TPT-MSN). Subsequently, the positive surface of TPT-MSN-TAT was capped with negatively charged components, poly(acrylic acid) (PAA)-cRGD peptide and citraconic anhydride (CAH)-metformin (MT), and acted as a smart gatekeeper. Comparatively, PAA-cRGD attached onto MSNs serving as the targeted molecules could upsurge by invasion into cancer cells. Interestingly, the acidic pH of the lysosomal compartment in tumor cells triggers the conjugated CAH from the polymer decorated mesoporous silica (PMS) nanocomposite and could efficiently release MT into the cytoplasm. Consequently, the remaining TPT-MSN-TAT efficiently targets the nucleus and delivers the TPT to improve synergistic chemotherapeutic effects. The precisely released drugs were individually enhanced in the in vitro and in vivo cell killing efficiencies. Thus, the study provides a potential drug delivery podium through combined drugs to realize cancer cell targeting approach.
Collapse
Affiliation(s)
- Chandran Murugan
- Division of Cancer Nanomedicine, Department of Zoology and Department of Environmental
Science, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Srinivasan Venkatesan
- Division of Cancer Nanomedicine, Department of Zoology and Department of Environmental
Science, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Soundarapandian Kannan
- Division of Cancer Nanomedicine, Department of Zoology and Department of Environmental
Science, Periyar University, Salem 636 011, Tamil Nadu, India
| |
Collapse
|