1
|
Tang X, Gao D, Liu X, Liu J, Chen T, He J. Novel RGD-decorated micelles loaded with doxorubicin for targeted breast cancer chemotherapy. Biomed Pharmacother 2024; 180:117460. [PMID: 39316967 DOI: 10.1016/j.biopha.2024.117460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
Nanotechnology has emerged as a promising innovative avenue for therapeutic intervention in cancer research. However, achieving satisfactory accumulation of nanoparticles in the tumor and fabricating optimized nanoparticles remain challenging. In this work, we developed a novel polymeric micelle system to actively target integrin receptors, which are usually overexpressed in breast cancer. We first synthesized a targeted peptide-modified cyclic (Arg-Gly-Asp-D-Phe-Cys) (c(RGDfc))-polyethylene glycol-acitretin amphipathic conjugate (RPA) and prepared doxorubicin (DOX)-loaded RPADm (RPA@DOX) micelles with a high drug loading content of more than 11 %. Compared with unmodified DOX-containing micelles, RPADm demonstrated increased cytotoxicity and cellular uptake by MCF-7 cells. Importantly, competitive binding experiments confirmed that the observed enhancement effect was attributed to the modification of c(RGDfc) on the surface of the micelles. Furthermore, due to its active tumor-targeting ability, compared with the other DOX-based formulations, the RPADm exhibited the highest tumor distribution and strongest therapeutic efficacy in MCF-7 tumor-bearing nude mice. Additionally, the safety evaluation experiments revealed that the DOX-loaded micelles had no obvious systemic toxicity. These results suggest that the developed micelles modified with c(RGDfc) are promising candidates for tumor-active targeting therapies.
Collapse
Affiliation(s)
- Xiang Tang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Dongxu Gao
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Xuejie Liu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Junfeng Liu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Tong Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| |
Collapse
|
2
|
Ali W, Chen Y, Gandahi JA, Qazi IH, Sun J, Wang T, Liu Z, Zou H. Cross-Talk Between Selenium Nanoparticles and Cancer Treatment Through Autophagy. Biol Trace Elem Res 2024; 202:2931-2940. [PMID: 37817045 DOI: 10.1007/s12011-023-03886-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023]
Abstract
Autophagy is commonly referred as self-eating and a complex cellular process that is involved in the digestion of protein and damaged organelles through a lysosome-dependent mechanism, and this mechanism is essential for maintaining proper cellular homeostasis. Selenium is a vital trace element that plays essential functions in antioxidant defense, redox state control, and range of particular metabolic processes. Selenium nanoparticles have become known as a promising agent for biomedical use, because of their high bioavailability, low toxicity, and degradability. However, and in recent years, they have attracted the interest of researchers in developing anticancer nano-drugs. Selenium nanoparticles can be used as a potential therapeutic agent or in combination with other agents to act as carriers for the development of new treatments. More intriguingly, selenium nanoparticles have been extensively shown to impact autophagy signaling, allowing selenium nanoparticles to be used as possible cancer treatment agents. This review explored the connections between selenium and autophagy, followed by developments and current advances of selenium nanoparticles for autophagy control in various clinical circumstances. Furthermore, this study examined the functions and possible processes of selenium nanoparticles in autophagy regulation, which may help us understand how selenium nanoparticles regulate autophagy for the potential cancer treatment.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jameel Ahmed Gandahi
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Izhar Hyder Qazi
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.
| |
Collapse
|
3
|
Varlamova EG. Molecular Mechanisms of the Therapeutic Effect of Selenium Nanoparticles in Hepatocellular Carcinoma. Cells 2024; 13:1102. [PMID: 38994955 PMCID: PMC11240755 DOI: 10.3390/cells13131102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
This review describes and summarizes, for the first time, the molecular mechanisms of the cytotoxic effect of selenium nanoparticles of various origins on hepatocellular carcinoma cells. The text provides information from recent years indicating the regulation of various signaling pathways and endoplasmic reticulum stress by selenium nanoparticles; the pathways of cell death of liver cancer cells as a result of exposure to selenium nanoparticles are considered. Particular attention is paid to the participation of selenoproteins and selenium-containing thioredoxin reductases and glutathione peroxidases in these processes. Previously, there were no reviews that fully reflected the cytotoxic effects of selenium nanoparticles specifically in hepatocellular carcinoma, despite the fact that many reviews and experimental articles have been devoted to the causes of this disease and the molecular mechanisms of regulation of cytotoxic effects by other agents. The relevance of this review is primarily explained by the fact that despite the development of various drugs and approaches for the treatment and prevention of hepatocellular carcinoma, this disease is still the fourth leading cause of death in the world. For this reason, a complete understanding of the latest trends in the treatment of oncology of various etiologies, especially hepatocellular carcinoma, is extremely important.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| |
Collapse
|
4
|
Varlamova EG, Goltyaev MV, Rogachev VV, Gudkov SV, Karaduleva EV, Turovsky EA. Antifibrotic Effect of Selenium-Containing Nanoparticles on a Model of TAA-Induced Liver Fibrosis. Cells 2023; 12:2723. [PMID: 38067151 PMCID: PMC10706216 DOI: 10.3390/cells12232723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
For the first time, based on the expression analysis of a wide range of pro- and anti-fibrotic, pro- and anti-inflammatory, and pro- and anti-apoptotic genes, key markers of endoplasmic reticulum stress (ER-stress), molecular mechanisms for the regulation of fibrosis, and accompanying negative processes caused by thioacetamide (TAA) injections and subsequent injections of selenium-containing nanoparticles and sorafenib have been proposed. We found that selenium nanoparticles of two types (doped with and without sorafenib) led to a significant decrease in almost all pro-fibrotic and pro-inflammatory genes. Sorafenib injections also reduced mRNA expression of pro-fibrotic and pro-inflammatory genes but less effectively than both types of nanoparticles. In addition, it was shown for the first time that TAA can be an inducer of ER-stress, most likely activating the IRE1α and PERK signaling pathways of the UPR, an inducer of apoptosis and pyroptosis. Sorafenib, despite a pronounced anti-apoptotic effect, still did not reduce the expression of caspase-3 and 12 or mitogen-activated kinase JNK1 to control values, which increases the risk of persistent apoptosis in liver cells. After injections of selenium-containing nanoparticles, the negative effects caused by TAA were leveled, causing an adaptive UPR signaling response through activation of the PERK signaling pathway. The advantages of selenium-containing nanoparticles over sorafenib, established in this work, once again emphasize the unique properties of this microelement and serve as an important factor for the further introduction of drugs based on it into clinical practice.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| | - Michail Victorovich Goltyaev
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| | - Vladimir Vladimirovich Rogachev
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute, the Russian Academy of Sciences, 119991 Moscow, Russia;
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Elena V. Karaduleva
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| |
Collapse
|
5
|
Huang H, Chen H, Shou D, Quan Y, Cheng J, Chen H, Ning G, Li Y, Xia Y, Zhou Y. Engineering siRNA-loaded and RGDfC-targeted selenium nanoparticles for highly efficient silencing of DCBLD2 gene for colorectal cancer treatment. DISCOVER NANO 2023; 18:94. [PMID: 37477789 PMCID: PMC10361954 DOI: 10.1186/s11671-023-03870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Effective and safe delivery of small interfering RNA (siRNA) by nanomaterials to cancer cells is one of the main challenges in cancer treatment. In this study, we constructed the selenium nanoparticles conjugated with RGDfC (one tumor-targeted polypeptide) to prepare a biocompatible gene vector (RGDfC-SeNPs) and then loaded with siDCBLD2 to synthesize the RGDfC-Se@siDCBLD2 for colorectal cancer (CRC) therapy. As expected, RGDfC-SeNPs could enhance the cellular uptake of siDCBLD2 in human HCT-116 colon cancer cells by targeting polypeptide RGDfC on the surface of colon cancer cells. RGDfC-Se@siDCBLD2 could be effectively internalized by HCT-116 cells mainly through a clathrin-related endocytosis pathway. In addition, RGDfC-Se@siDCBLD2 exhibited high siRNA release efficiency in an acidic tumor environment. Moreover, RGDfC-Se@siDCBLD2 could inhibit the proliferation and induce apoptosis in HCT-116 cells by special silencing gene DCBLD2 expression. RGDfC-Se@siDCBLD2 could be specifically accumulated to the tumor sites and exhibited significantly anti-CRC efficacy on HCT-116 tumor-bearing mice without obvious side effects. Taken together, these results suggest that selenium nanoparticles can be used as an effective gene vector with good biocompatibility, and RGDfC-Se@siDCBLD2 provides a promising strategy for combining tumor-target and siRNA delivery in treating CRC.
Collapse
Affiliation(s)
- Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Hanqing Chen
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Diwen Shou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Ying Quan
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Jiemin Cheng
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Gang Ning
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Yu Xia
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| |
Collapse
|
6
|
Shahidi M, Abazari O, Dayati P, Reza JZ, Modarressi MH, Tofighi D, Haghiralsadat BF, Oroojalian F. Using chitosan-stabilized, hyaluronic acid-modified selenium nanoparticles to deliver CD44-targeted PLK1 siRNAs for treating bladder cancer. Nanomedicine (Lond) 2023; 18:259-277. [PMID: 37125618 DOI: 10.2217/nnm-2022-0198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Aims: Achieving an effective biocompatible system for siRNAs delivery to the tumor site remains a significant challenge. Materials & methods: Selenium nanoparticles (SeNPs) modified by chitosan (CS) and hyaluronic acid (HA) were fabricated for PLK1 siRNAs (siPLK1) delivery to the bladder cancer cells. The HA-CS-SeNP@siPLK1 efficacy was evaluated using in vitro and in vivo models. Results: HA-CS-SeNP@siPLK1 was selectively internalized into T24 cells through clathrin-mediated endocytosis. Treatment with HA-CS-SeNP@siPLK1 successfully silenced the PLK1 gene, inhibited cell proliferation and induced cell cycle arrest in vitro. HA-CS-SeNP@siPLK1 could also inhibit tumor growth in vivo without causing systemic toxicity. Conclusion: Our results suggest that HA-CS-SeNPs may provide a good vehicle for delivering siPLK1 to the bladder tumor site.
Collapse
Affiliation(s)
- Maryamsadat Shahidi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, 89151, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, 89151, Iran
| | - Parisa Dayati
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115, Iran
| | - Javad Zavar Reza
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, 89151, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Davood Tofighi
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bibi Fatemeh Haghiralsadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 89151, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnūrd, 94149, Iran
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences Bojnūrd, 94149, Iran
| |
Collapse
|
7
|
Chen D, Lu H, Ma Y, Huang Y, Zhang T, Fan S, Lin W, Huang Y, Jin H, Ruan Y, Xu JF, Pi J. Trends and recent progresses of selenium nanoparticles as novel autophagy regulators for therapeutic development. Front Nutr 2023; 10:1116051. [PMID: 36819694 PMCID: PMC9931911 DOI: 10.3389/fnut.2023.1116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Autophagy, one of the major intracellular degradation systems, plays an important role in maintaining normal cellular physiological functions and protecting organisms from different diseases. Selenium (Se), an essential trace element, is involved in many metabolic regulatory signaling events and plays a key role in human health. In recent years, selenium nanoparticles (Se NPs) have attracted increasing attentions in biomedical field due to their low toxicity, high bioavailability and high bioactivity. Taking the advantage of their advanced biological activities, Se NPs can be used alone as potential therapeutic agents, or combine with other agents and served as carriers for the development of novel therapeutics. More interestingly, Se NPs have been widely reported to affect autophagy signaling, which therefor allow Se NPs to be used as potential therapeutic agents against different diseases. Here, this review suggested the relationships between Se and autophagy, followed by the trends and recent progresses of Se NPs for autophagy regulation in different diseased conditions. More importantly, this work discussed the roles and potential mechanisms of Se NPs in autophagy regulating, which might enhance our understanding about how Se NPs regulate autophagy for potential disease treatment. This work is expected to promote the potential application of Se NPs as novel autophagy regulators, which might benefit the development of novel autophagy associated therapeutics.
Collapse
Affiliation(s)
- Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Tangxin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,*Correspondence: Yongdui Ruan,
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,Jun-Fa Xu,
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,Jiang Pi,
| |
Collapse
|
8
|
Chen D, Ning Z, Su J, Zheng R, Liu X, Wu H, Zhu B, Li Y. Inhibition of H1N1 by Picochlorum sp. 122 via AKT and p53 signaling pathways. Food Sci Nutr 2023; 11:743-751. [PMID: 36789072 PMCID: PMC9922122 DOI: 10.1002/fsn3.3110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
Influenza viruses cause a severe threat to global health, which can lead to annual epidemics and cause pandemics occasionally. However, the number of anti-influenza therapeutic agents is very limited. Polysaccharides, extracted from Picochlorum sp. (PPE), seaweed Polysaccharides, have exhibited antiviral activity and were expected to be used for influenza treatment. In our research, the capability of PPE to inhibit H1N1 infection was proved in MDCK cells. PPE could make MDCK cells avoid being infected with H1N1 and inhibited nuclear fragmentation and condensation of chromatin. PPE evidently inhibited the generation of reactive oxygen species in MDCK cells. Mechanism study revealed that PPE prevented MDCK cells from H1N1 infection through induction of apoptosis by stimulating AKT signaling pathway and suppressing p-p53 signaling pathway. In conclusion, PPE turns out to act as a prospective antiviral drug for H1N1 influenza.
Collapse
Affiliation(s)
- Danyang Chen
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Zhihui Ning
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jingyao Su
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Ruilin Zheng
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Xia Liu
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Hua‐lian Wu
- South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Progress in the Surface Functionalization of Selenium Nanoparticles and Their Potential Application in Cancer Therapy. Antioxidants (Basel) 2022; 11:antiox11101965. [PMID: 36290687 PMCID: PMC9598587 DOI: 10.3390/antiox11101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
As an essential micronutrient, selenium participates in numerous life processes and plays a key role in human health. In the past decade, selenium nanoparticles (SeNPs) have attracted great attention due to their excellent functionality for potential applications in pharmaceuticals. However, the utilization of SeNPs has been restricted by their instability and low targeting ability. Since the existing reviews mainly focused on the applications of SeNPs, this review highlights the synthesis of SeNPs and the strategies to improve their stability and targeting ability through surface functionalization. In addition, the utilization of functionalized SeNPs for the single and co-delivery of drugs or genes to achieve the combination of therapy are also presented, with the emphasis on the potential mechanism. The current challenges and prospects of functionalized SeNPs are also summarized. This review may provide valuable information for the design of novel functionalized SeNPs and promote their future application in cancer therapy.
Collapse
|
10
|
Nisha R, Kumar P, Kumar U, Mishra N, Maurya P, Singh P, Tabassum H, Alka, Singh S, Guleria A, Saraf SA. Assessment of hyaluronic acid-modified imatinib mesylate cubosomes through CD44 targeted drug delivery in NDEA-induced hepatic carcinoma. Int J Pharm 2022; 622:121848. [DOI: 10.1016/j.ijpharm.2022.121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
|
11
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
12
|
Chowdhury MMH, Salazar CJJ, Nurunnabi M. Recent advances in bionanomaterials for liver cancer diagnosis and treatment. Biomater Sci 2021; 9:4821-4842. [PMID: 34032223 DOI: 10.1039/d1bm00167a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to the World Health Organization, liver cancer is the fourth leading cause of cancer associated with death worldwide. It demands effective treatment and diagnostic strategies to hinder its recurrence, complexities, aggressive metastasis and late diagnosis. With recent progress in nanotechnology, several nanoparticle-based diagnostic and therapeutic modalities have entered into clinical trials. With further developments in nanoparticle mediated liver cancer diagnosis and treatment, the approach holds promise for improved clinical liver cancer management. In this review, we discuss the key advances in nanoparticles that have potential for liver cancer diagnosis and treatment. We also discuss the potential of nanoparticles to overcome the limitations of existing therapeutic modalities.
Collapse
Affiliation(s)
- Mohammed Mehadi Hassan Chowdhury
- School of Medicine, Faculty of Health, Deakin University, 75 Pigdons Road, Waurnponds, Vic-3216, Australia and Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | | | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, TX 79968, USA. and Biomedical Engineering, University of Texas at El Paso, TX 79968, USA and Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA and Border Biomedical Research Center, University of Texas at El Paso, TX 79968, USA
| |
Collapse
|
13
|
Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021; 26:3228. [PMID: 34072160 PMCID: PMC8198790 DOI: 10.3390/molecules26113228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide-NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide-NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide-NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Xia Y, Tang G, Chen Y, Wang C, Guo M, Xu T, Zhao M, Zhou Y. Tumor-targeted delivery of siRNA to silence Sox2 gene expression enhances therapeutic response in hepatocellular carcinoma. Bioact Mater 2021; 6:1330-1340. [PMID: 33210026 PMCID: PMC7658325 DOI: 10.1016/j.bioactmat.2020.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi) is one of the most promising methods for the treatment of malignant tumors. However, developing an efficient biocompatible delivery vector for small interfering RNA (siRNA) remains a challenging issue. This study aimed to prepare a non-viral tumor-targeted carrier, named RGDfC-modified functionalized selenium nanoparticles (RGDfC-SeNPs). RGDfC-SeNPs were used to selectively deliver siSox2 to HepG2 liver cancer cells and tissues for the treatment of hepatocellular carcinoma (HCC). In the current study, RGDfC-SeNPs were successfully synthesized and characterized. It was shown that RGDfC-SeNPs could effectively load siSox2 to prepare an antitumor prodrug RGDfC-Se@siSox2. RGDfC-Se@siSox2 exhibited selective uptake in HepG2 liver cancer cells and LO2 normal liver cells, indicating RGDfC-SeNPs could effectively deliver siSox2 to HepG2 liver cancer cells. RGDfC-Se@siSox2 entered HepG2 cells via clathrin-mediated endocytosis by firstly encircling the cytoplasm and then releasing siSox2 in the lysosomes. RGDfC-Se@siSox2 could effectively silence Sox2 and inhibit the proliferation, migration and invasion of HepG2 cells. RGDfC-Se@siSox2 induced HepG2 cells apoptosis most likely via overproduction of reactive oxygen species and disruption of the mitochondrial membrane potentials. Most importantly, RGDfC-Se@siSox2 significantly inhibited the tumor growth in HepG2 tumor-bearing mice without obvious toxic side effects. These studies indicated that RGDfC-SeNPs may be an ideal gene carrier for delivering siSox2 to HepG2 cells and that RGDfC-Se@siSox2 may be a novel and highly specific gene-targeted prodrug therapy for HCC.
Collapse
Affiliation(s)
- Yu Xia
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Guoyi Tang
- Department of Obstetrics Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yi Chen
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Min Guo
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Tiantian Xu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingqi Zhao
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|
15
|
Wang C, Xia Y, Huo S, Shou D, Mei Q, Tang W, Li Y, Liu H, Zhou Y, Zhu B. Silencing of MEF2D by siRNA Loaded Selenium Nanoparticles for Ovarian Cancer Therapy. Int J Nanomedicine 2020; 15:9759-9770. [PMID: 33304100 PMCID: PMC7723231 DOI: 10.2147/ijn.s270441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Delivery of therapeutic small interfering RNA (siRNA) via functionalized nanoparticles holds great promise for cancer therapy. However, developing a safe and efficient delivery carrier of siRNA is a challenging issue. METHODS RGDfC peptide was used to modify the surface of selenium nanoparticles (SeNPs) to synthesize a biocompatible siRNA delivery vehicle (R-SeNPs), and MEF2D-siRNA was loaded onto R-SeNPs to prepare a functionalized selenium nanoparticle R-Se@MEF2D-siRNA. The chemical properties of R-SeNPs were characterized, and the anticancer efficacy as well as related mechanisms of R-Se@MEF2D-siRNA were further explored. RESULTS R-Se@MEF2D-siRNA was significantly taken up by SKOV3 cells and could enter SKOV3 cells mainly in the clathrin-associated endocytosis way. The result of in vitro siRNA release demonstrated that R-Se@MEF2D-siRNA could release MEF2D-siRNA quicker in a microenvironment simulating a lysosomal environment in tumor cells compared to a normal physiological environment. The results of qRT-PCR assay proved that R-Se@MEF2D-siRNA could effectively silence the expression of the MEF2D gene in SKOV3 cells. R-Se@MEF2D-siRNA remarkably suppressed the proliferation of SKOV3 cells and further triggered its apoptosis. In addition, R-Se@MEF2D-siRNA had the capability to disrupt mitochondrial membrane potential (MMP) in SKOV3 cells and resulted in the overproduction of reactive oxygen species (ROS), indicating that mitochondrial dysfunction and ROS generation played an important role in the apoptosis of SKOV3 cells induced by R-Se@MEF2D-siRNA. In vivo, R-Se@MEF2D-siRNA also exhibited excellent antitumor activity mainly through decreasing tumor cells proliferation and triggering their apoptosis in tumor-bearing nude mice. CONCLUSION R-Se@MEF2D-siRNA provides an alternative strategy for ovarian cancer treatment in the clinic.
Collapse
Affiliation(s)
- Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou510230, People’s Republic of China
| | - Yu Xia
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Shaochuan Huo
- Department of Orthopedics, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen518048, People’s Republic of China
- Shenzhen Research Institute of Guangzhou University of Chinese Medicine, Shenzhen518048, People’s Republic of China
| | - Diwen Shou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Qing Mei
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Wenjuan Tang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Yinghua Li
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Bing Zhu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
| |
Collapse
|
16
|
El-Naby ASAHH, Ibrahim S, Hozyen HF, Sosa ASA, Mahmoud KGM, Farghali AA. Impact of nano-selenium on nuclear maturation and genes expression profile of buffalo oocytes matured in vitro. Mol Biol Rep 2020; 47:8593-8603. [PMID: 33068228 DOI: 10.1007/s11033-020-05902-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023]
Abstract
Supplementation of maturation media with antioxidant (bulk form) improves oocyte maturation. However, the influence of adding antioxidant (nano-particles) on oocyte maturation is not well known. We aimed to evaluate the effect of selenium nano-particles (SeNP) and bulk selenium (Se) on buffalo oocytes maturation, in terms nuclear maturation and molecular level. Oocytes were distributed into four groups; 1st group was control, 2nd group was supplied with Se (10 ng/ml), 3rd and 4th groups were supplied with 1 µg/ml SeNP (67 nm), and SeNP (40 nm), respectively. Matured oocytes were fixed and stained to determine nuclear maturation. Oocytes and COC after IVM were stored at - 80 °C, for RNA isolation and qRT-PCR for selected genes. The Se and seNP (40 nm) had a positive effect on oocytes nuclear maturation rates. Apoptosis-related cysteine peptidase (CASP3) was reduced in all supplemented groups. Anti-Mullerian hormone (AMH) was up-regulated in oocytes supplemented with SeNP (40 nm). In COC, AMH increased in group supplemented with SeNP (67 nm). In oocytes, phospholipase A2 group III (PLA2G3) decreased in all supplemented groups. While in COC, PLA2G3increased in group supplied with Se. In COC, luteinizing hormone/choriogonadotropin receptor (LHCGR) increased in groups supplied with Se or SeNP (40 nm).Glutathione peroxidase 4 (GPX4) increased in all supplemented groups, in oocytes and COC. In oocytes, superoxide dismutase (SOD) was up-regulated in supplemented groups {Se and SeNP (67 nm)}.The DNA methyltransferase (DNMT) in oocytes was reduced in supplemented groups. In oocytes, the POU class 5 homeobox 1 (OCT4) increased in all supplemented groups. In COC, the OCT4 was over-expressed in group supplemented with SeNP (40 nm). Selenium supplementation in bulk or nano-particle improved in vitro buffalo oocytes maturation, viaup-regulation of antioxidant defense and development competence genes. SeNP (smaller size, 40 nm) induced higher expression of antioxidant gene.
Collapse
Affiliation(s)
| | - Sally Ibrahim
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba F Hozyen
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - A S A Sosa
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Karima Gh M Mahmoud
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Post Graduate Studies for Advanced Sciences, BeniSuef University, BeniSuef, Egypt
| |
Collapse
|
17
|
Xia Y, Tang G, Wang C, Zhong J, Chen Y, Hua L, Li Y, Liu H, Zhu B. Functionalized selenium nanoparticles for targeted siRNA delivery silence Derlin1 and promote antitumor efficacy against cervical cancer. Drug Deliv 2020; 27:15-25. [PMID: 31830840 PMCID: PMC6968560 DOI: 10.1080/10717544.2019.1667452] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Small interfering RNA (siRNA) exhibits great potential as a novel therapeutic option due to its highly sequence-specific ability to silence genes. However, efficient and safe delivery carriers are required for developing novel therapeutic paradigms. Thus, the successful development of efficient delivery platforms for siRNA is a crucial issue for the development of siRNA-based drugs in cancer treatments. In this study, biocompatible selenium nanoparticles (SeNPs) were loaded with RGDfC peptide to fabricate tumor-targeting gene delivery vehicle RGDfC-SeNPs. Subsequently, RGDfC-SeNPs were loaded with Derlin1-siRNA to fabricate RGDfC-Se@siRNA, which are functionalized selenium nanoparticles. RGDfC-Se@siRNA showed greater uptake in HeLa cervical cancer cells in comparison with that in human umbilical vein endothelial cells (HUVECs), verifying the RGDfC-mediated specific uptake of RGDfC-Se@siRNA. RGDfC-Se@siRNA was capable of entering HeLa cells via clathrin-associated endocytosis, and showed faster siRNA release in a cancer cell microenvironment in comparison with a normal physiological environment. qPCR and western blotting assays both indicated that RGDfC-Se@siRNA exhibited an obvious gene silencing efficacy in HeLa cells. RGDfC-Se@siRNA suppressed the invasion, migration and the proliferation of HeLa cells, and triggered HeLa cell apoptosis. Moreover, RGDfC-Se@siRNA induced the disruption of mitochondrial membrane potentials. Meanwhile, RGDfC-Se@siRNA enhanced the generation of reactive oxygen species (ROS) in HeLa cell, suggesting that mitochondrial dysfunction mediated by ROS might play a significant role in RGDfC-Se@siRNA-induced apoptosis. Interestingly, RGDfC-SeNPs@siRNA exhibited significant antitumor activity in a HeLa tumor-bearing mouse model. Additionally, RGDfC-SeNPs@siRNA is nontoxic to main organ of mouse. The above results indicate that RGDfC-Se@siRNA provides a promising potential for cervical cancer therapy.
Collapse
Affiliation(s)
- Yu Xia
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guoyi Tang
- Department of Obstetrics Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiayu Zhong
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi Chen
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liang Hua
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yinghua Li
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Zhu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Zhang Z, Du Y, Liu T, Wong KH, Chen T. Systematic acute and subchronic toxicity evaluation of polysaccharide-protein complex-functionalized selenium nanoparticles with anticancer potency. Biomater Sci 2020; 7:5112-5123. [PMID: 31573569 DOI: 10.1039/c9bm01104h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Functionalized selenium nanoparticles (SeNPs) have demonstrated potential for applications in cancer chemotherapy, radio-sensitization, nephroprotection and drug delivery. However, their clinical application requires further systemic safety evaluation. Therefore, in this study, we examine the systematic acute and subchronic toxicity of polysaccharide-protein complex coated SeNPs (PTR-SeNPs). These particles exhibited a low oral acute toxicity (higher LD50) in SPF grade ICR mice and SD rats, and the evaluation of subchronic toxicity demonstrated that the no observed effect level (NOAEL) of the PTR-SeNPs was less than 200 μg Se per kg BW per day, which is about 30 times the tolerable upper intake levels of Se in the human body. In addition, we also found that, under a safe dose (0.75-7.5 mg kg-1), the oral administration of PTR-SeNPs dramatically inhibited the growth of cancer in a tumor-bearing nude mouse model, and the results of the histological analysis indicated that PTR-SeNPs did not significantly damage the major organs, including the liver, spleen, heart, kidneys and lungs. Moreover, the induction of caspase activation and mitochondrial dysfunction was the major anticancer action mechanism of PTR-SeNPs. Taken together, the results of this study provide a simple approach for the facile and large-scale manufacturing of SeNPs with reduced toxicity and enhanced anticancer activity through the regulation of the surface properties of SeNPs. Furthermore, this study generates evidence for the future exploration and translational application of these materials through oral administration in nanomedicine and nutritional sciences.
Collapse
Affiliation(s)
- Zehang Zhang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | | | |
Collapse
|
19
|
Zou J, Su S, Chen Z, Liang F, Zeng Y, Cen W, Zhang X, Xia Y, Huang D. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3456-3464. [PMID: 31469318 DOI: 10.1080/21691401.2019.1626863] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Targeted delivery of chemotherapeutics by functionalized nanoparticles exhibits a wonderful prospect for cancer treatment. In this paper, selenium nanoparticles (SeNPs) was linked with hyaluronic acid (HA) to prepare tumor-targeted delivery vehicle HA-SeNPs, and HA-SeNPs was loaded with paclitaxel (PTX) to fabricate functionalized selenium nanoparticles HA-Se@PTX. HA-Se@PTX showed greater uptake in A549 cells in comparison with that in HUVEC, verifying HA-mediated specific uptake of HA-Se@PTX. HA-Se@PTX was capable of entering A549 cells via clathrin-associated endocytosis and showed faster drug release in cancer cell microenvironment in comparison with normal physiological environment. HA-Se@PTX could obviously inhibit the proliferation, migration and invasion of A549 cells and trigger A549 cells apoptosis. Moreover, active targeting functionalized selenium nanoparticles HA-Se@PTX showed greater in vivo antitumor activity compared with free PTX or passive targeting delivery system Se@PTX. In addition, HA-Se@PTX exhibited negligible toxicity on the major organs of mice. In a word, HA-Se@PTX may develop into a valuable nanoscale antitumor drug agent for lung cancer treatment.
Collapse
Affiliation(s)
- Jianjun Zou
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Shan Su
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Zhuohong Chen
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Feng Liang
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Yunyun Zeng
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Wenchang Cen
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Xianlan Zhang
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Yu Xia
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou , , P.R. China
| | - Donglan Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , P.R. China
| |
Collapse
|
20
|
Xia Y, Tang G, Guo M, Xu T, Chen H, Lin Z, Li Y, Chen Y, Zhu B, Liu H, Cao J. Silencing KLK12 expression via RGDfC-decorated selenium nanoparticles for the treatment of colorectal cancer in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110594. [PMID: 32204058 DOI: 10.1016/j.msec.2019.110594] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023]
Abstract
Short interfering RNA (siRNA) has been investigated as a promising modality of cancer treatment due to its capability to target specific target genes for downregulation. However, the successful application of this strategy depends on producing a safe and effective carrier system for delivering siRNA to the tumor. Thus, investigation of siRNA delivery carriers is a fundamental step in the field of siRNA-based therapeutics. In the current research, the surface of selenium nanoparticles (SeNPs) were modified with the tumor-targeted molecular RGDfC peptide with positive charge to synthetize the biocompatible siRNA carrier RGDfC-SeNPs. Subsequently, KLK12-siRNA was loaded onto the surface of RGDfC-SeNPs to create functionalized nanoparticles (RGDfC-Se@siRNA) that we tested for in vitro and in vivo antitumor efficacy. We measured significantly greater particle uptake in HT-29 colorectal cancer cells relative to HUVECs, providing evidence for the targeted delivery of RGDfC-Se@siRNA. We found that RGDfC-Se@siRNA could enter HT-29 cells primarily via clathrin-mediated endocytosis. Further, these particles experienced faster siRNA release in an acidic microenvironment compared to pH 7.4. The results from quantitative PCR and Western blot assays suggested that the target gene of KLK12 in HT-29 cells were obviously silenced by RGDfC-Se@siRNA. The further biological studies showed that treatment with RGDfC-Se@siRNA had ability to suppress the proliferation and migration/invasion of HT-29 cells, and triggered HT-29 cells apoptosis. RGDfC-Se@siRNA could induce the mitochondrial membrane potential (MMP) disruption and enhance the reactive oxygen species (ROS) generation in HT-29 cells, indicating that RGDfC-Se@siRNA induced the HT-29 cells apoptosis possibly by a ROS-mediated mitochondrial dysfunction pathway. Importantly, the in vivo antitumor study also verified that RGDfC-Se@siRNA could significantly suppress the growth of tumor in vivo. In addition, we did not observe any signs of systemic or tissue-specific toxicity after administration of RGDfC-Se@siRNA in mice. As a whole, these findings suggest that RGDfC-Se@siRNA has promising potential as a therapy for colorectal cancer.
Collapse
Affiliation(s)
- Yu Xia
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| | - Guoyi Tang
- Department of Obstetrics Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Min Guo
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Tiantian Xu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Haiyang Chen
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Zhengfang Lin
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yinghua Li
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yi Chen
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Bing Zhu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| |
Collapse
|
21
|
Zhong J, Xia Y, Hua L, Liu X, Xiao M, Xu T, Zhu B, Cao H. Functionalized selenium nanoparticles enhance the anti-EV71 activity of oseltamivir in human astrocytoma cell model. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3485-3491. [PMID: 31422717 DOI: 10.1080/21691401.2019.1640716] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Enterovirus 71 (EV71) which commonly caused the hand-foot-mouth disease (HFMD) has become one of public health challenges worldwide. However, no effective vaccines or drugs for this disease has been developed. Thus, there is an urgent need to find a new strategy for treating the EV71 infection. Oseltamivir (OT) is an effective antiviral agent, but continuous use of oseltamivir leads to a diminished therapeutic effect in the clinic. In order to improve the antiviral activity of oseltamivir, oseltamivir was loaded onto surfaces of selenium nanoparticles (SeNPs) to fabricate a functionalized antiviral nanoparticles SeNPs@OT. The size of SeNPs@OT was tested by TEM and dynamic light scattering. The chemical structure and elemental composition of SeNPs@OT were analyzed by FT-IR and EDX, respectively. SeNPs@OT exhibited good stability and effective drug release in serum and PBS. SeNPs@OT efficiently entered into human astrocyte U251 cells (host cells) via clathrin-associated endocytosis and inhibited EV71 proliferation, which could protect EV71-infected U251 cells from apoptosis through mitochondrial pathway. Furthermore, SeNPs@OT inhibited EV71 activity probably by reducing the generation of reactive oxygen species in EV71-infected U251 cells. Interestingly, SeNPs obviously enhanced antiviral activity of oseltamivir in the anti-EV71 cell model. Taken together, SeNPs@OT is a promising antiviral drug candidate for EV71 infection.
Collapse
Affiliation(s)
- Jiayu Zhong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University , Guangzhou , People's Republic of China.,Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Yu Xia
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Liang Hua
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Xiaomin Liu
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Misi Xiao
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Tiantian Xu
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Bing Zhu
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University , Guangzhou , People's Republic of China
| |
Collapse
|
22
|
Kapoor D, Chourasiya Y, Pethe A, Maheshwari R, Tekade RK. Small interfering RNA-based advanced nanoparticles for the treatment of cancer. THE FUTURE OF PHARMACEUTICAL PRODUCT DEVELOPMENT AND RESEARCH 2020:341-365. [DOI: 10.1016/b978-0-12-814455-8.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Xia Y, Zhong J, Zhao M, Tang Y, Han N, Hua L, Xu T, Wang C, Zhu B. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv 2019; 26:1-11. [PMID: 31928356 PMCID: PMC6327939 DOI: 10.1080/10717544.2018.1556359] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Galactose-modified selenium nanoparticles (GA-SeNPs) loading with doxorubicin (DOX) for hepatocellular carcinoma (HCC) therapy was investigated in this paper. Selenium nanoparticles (SeNPs) were modified with galactose as tumor targeting moiety to fabricate tumor-targeted delivery carrier GA-SeNPs, then doxorubicin was loaded onto the surface of GA-SeNPs for improving antitumor efficacy of DOX in HCC therapy. Chemical structure characterization of GA-Se@DOX showed that DOX was successfully loaded to the surface of GA-SeNPs to prepare functionalized antitumor drug delivery system GA-Se@DOX. GA-Se@DOX exhibited effective cellular uptake in HepG2 cells and entered HepG2 cells mainly by clathrin-mediated endocytosis pathway. GA-Se@DOX showed significant activity to induce the apoptosis of HepG2 cells in vitro. The western blotting result indicated that GA-Se@DOX induced HepG2 cells apoptosis via activating caspase signaling and Bcl-2 family proteins. Moreover, active targeting delivery system GA-Se@DOX exhibited excellent antitumor efficacy in vivo in comparison with passive targeting delivery system Se@DOX. Histology analysis showed that GA-Se@DOX exhibited no obvious damage to major organs including heart, liver, spleen, lung, and kidney under the experimental condition. Taken together, GA-Se@DOX may be one novel promising nanoscale drug candidate for HCC therapy.
Collapse
Affiliation(s)
- Yu Xia
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiayu Zhong
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingqi Zhao
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ying Tang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ning Han
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liang Hua
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tiantian Xu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Zhu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Thermosensitive hydrogels for sustained-release of sorafenib and selenium nanoparticles for localized synergistic chemoradiotherapy. Biomaterials 2019; 216:119220. [DOI: 10.1016/j.biomaterials.2019.05.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 12/17/2022]
|
25
|
Targeting integrins for cancer management using nanotherapeutic approaches: Recent advances and challenges. Semin Cancer Biol 2019; 69:325-336. [PMID: 31454671 DOI: 10.1016/j.semcancer.2019.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Integrins are the main cell surface receptors and execute multifaceted functions such as the bidirectional transmission of signals (i.e., inside-out and outside-in) and provide communication between cells and their microenvironments. Integrins are the key regulators of critical biological functions and contribute significantly to the promotion of cancer at almost every stage of disease progression from initial tumor formation to metastasis. Integrin expressions are frequently altered in different cancers, and consequently, several therapeutic strategies targeting integrins have been developed. Furthermore, nanotechnology-based approaches have been devised to overcome the intrinsic limitations of conventional therapies for cancer management, and have been shown to more precise, safer, and highly effective therapeutic tools. Although nanotechnology-based approaches have achieved substantial success for the management of cancer, certain obstacles remain such as inadequate knowledge of nano-bio interactions and the challenges associated with the three stages of clinical trials. This review highlights the different roles of integrins and of integrin-dependent signaling in various cancers and describes the applications of nanotherapeutics targeting integrins. In addition, we discuss RGD-based approaches and challenges posed to cancer management.
Collapse
|
26
|
Xia Y, Xiao M, Zhao M, Xu T, Guo M, Wang C, Li Y, Zhu B, Liu H. Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110100. [PMID: 31753388 DOI: 10.1016/j.msec.2019.110100] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/05/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022]
Abstract
Development of novel tumor-targeted drug vehicles for cancer therapy is very important and has become one of major topics for designing nanoscale chemotherapeutics delivery systems. In the present study, selenium nanoparticles (SeNPs) was decorated with hyaluronic acid (HA) to prepare HA-SeNPs nanoparticles which were used to load doxorubicin (DOX) to fabricate tumor-targeted functionalized selenium nanoparticles HA-Se@DOX. In vitro and in vivo antitumor activities of HA-Se@DOX in human cervical carcinoma treatment were investigated. HA-Se@DOX showed selective cellular uptakes between cervical cancer HeLa cells and human umbilical vein endothelial cells (HUVEC). In vitro release result indicated that DOX was released from HA-SeNPs faster in acidic environment in comparison with normal physiological environment and 76.9% DOX was released in pH 5.4 during initial 30 h. HA-Se@DOX showed high activity to inhibit HeLa cell proliferation and triggered HeLa cell apoptosis via activating Bcl-2 signaling pathway. In vivo antitumor study showed that HA-Se@DOX inhibited tumor growth through suppressing cancer cells proliferation and inducing cancer cells apoptosis. Interestingly, HA-Se@DOX exhibited stronger anticancer activity than free DOX and Se@DOX in vitro and in vivo. Additionally, HA-Se@DOX did not cause damage to major organs at the used dose. HA-Se@DOX is a promising antitumor agent for human cervical carcinoma treatment and this research provides a novel therapeutic strategy for cancer therapy.
Collapse
Affiliation(s)
- Yu Xia
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Misi Xiao
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingqi Zhao
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Tiantian Xu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Min Guo
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yinghua Li
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Bing Zhu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
27
|
Singh S, Maurya PK. Nanomaterials-Based siRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. NANOTECHNOLOGY IN MODERN ANIMAL BIOTECHNOLOGY 2019. [PMCID: PMC7121101 DOI: 10.1007/978-981-13-6004-6_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Ribonucleic acid interference (RNAi) is a potential alternative therapeutic approach to knock down the overexpression of genes in several disorders especially cancers with underlying genetic dysfunctions. For silencing of specific genes involved in cell cycle, small/short interfering ribonucleic acids (siRNAs) are being used clinically. The siRNA-based RNAi is more efficient, specific and safe antisense technology than other RNAi approaches. The route of siRNA administration for siRNA therapy depends on the targeted site. However, certain hurdles like poor stability of siRNA, saturation, off-target effect, immunogenicity, anatomical barriers and non-targeted delivery restrict the successful siRNA therapy. Thus, advancement of an effective, secure, and long-term delivery system is prerequisite to the medical utilization of siRNA. Polycationic nanocarriers mediated targeted delivery system is an ideal system to remove these hurdles and to increase the blood retention time and rate of intracellular permeability. In this chapter, we will mainly discuss the different biocompatible, biodegradable, non-toxic (organic, inorganic and hybrid) nanocarriers that encapsulate and shield the siRNA from the different harsh environment and provides the increased systemic siRNA delivery.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, Gujarat India
| | | |
Collapse
|
28
|
Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 2019; 111:802-812. [DOI: 10.1016/j.biopha.2018.12.146] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
|
29
|
Nanostructured biomedical selenium at the biological interface (Review). Biointerphases 2018; 13:06D301. [DOI: 10.1116/1.5042693] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Xia Y, Xu T, Zhao M, Hua L, Chen Y, Wang C, Tang Y, Zhu B. Delivery of Doxorubicin for Human Cervical Carcinoma Targeting Therapy by Folic Acid-Modified Selenium Nanoparticles. Int J Mol Sci 2018; 19:E3582. [PMID: 30428576 PMCID: PMC6274826 DOI: 10.3390/ijms19113582] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
Cancer-specific drug delivery represents an attractive approach to preventing undesirable side effects and increasing the accumulation of the drug in tumors. The surface modification of selenium nanoparticles (SeNPs) with targeting moieties thus represents an effective strategy for cancer therapy. In this study, SeNPs were modified with folic acid (FA), whose receptors were overexpressed on the surface of cancer cells, including human cervical carcinoma HeLa cells, to fabricate tumor-targeting delivery carrier FA-SeNPs nanoparticles. Then, the anticancer drug doxorubicin (DOX) was loaded onto the surface of the FA-SeNPs for improving the antitumor efficacy of DOX in human cervical carcinoma therapy. The chemical structure characterization of FA-Se@DOX showed that DOX was successfully loaded to the surface of FA-SeNPs to prepare FA-Se@DOX nanoparticles. FA-Se@DOX exhibited significant cellular uptake in human cervical carcinoma HeLa cells (folate receptor overexpressing cells) in comparison with lung cancer A549 cells (folate receptor deficiency cells), and entered HeLa cells mainly by the clathrin-mediated endocytosis pathway. Compared to free DOX or Se@DOX at the equivalent dose of DOX, FA-Se@DOX showed obvious activity to inhibit HeLa cells' proliferation and induce the apoptosis of HeLa cells. More importantly, FA-Se@DOX could specifically accumulate in the tumor site, which contributed to the significant antitumor efficacy of FA-Se@DOX in vivo. Taken together, FA-Se@DOX may be one novel promising drug candidate for human cervical carcinoma therapy.
Collapse
Affiliation(s)
- Yu Xia
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| | - Tiantian Xu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| | - Mingqi Zhao
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| | - Liang Hua
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| | - Yi Chen
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| | - Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| | - Ying Tang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| | - Bing Zhu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
31
|
Li Y, Guo M, Lin Z, Zhao M, Xia Y, Wang C, Xu T, Zhu B. Multifunctional selenium nanoparticles with Galangin-induced HepG2 cell apoptosis through p38 and AKT signalling pathway. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180509. [PMID: 30564384 PMCID: PMC6281927 DOI: 10.1098/rsos.180509] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/23/2018] [Indexed: 05/24/2023]
Abstract
The morbidity and mortality of hepatocellular carcinoma, the most common cancer, are increasing continuously worldwide. Galangin (Ga) has been demonstrated to possess anti-cancer effect, but the efficacy of Ga was limited by its low permeability and poor solubility. To develop aqueous formulation and improve the anti-cancer activity of Ga, surface decoration of functionalized selenium nanoparticles with Ga (Se@Ga) was synthesized in the present study. The aim of this study was to evaluate the anti-cancer effect of Se@Ga and the mechanism on HepG2 cells. Se@Ga-induced HepG2 cell apoptosis was confirmed by depletion of mitochondrial membrane potential, translocation of phosphatidylserine and caspase-3 activation. Furthermore, Se@Ga enhanced the anti-cancer activity of HepG2 cells through ROS-mediated AKT and p38 signalling pathways. In summary, these results suggest that Se@Ga might be potential candidate chemotherapy for cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, People's Republic of China
| |
Collapse
|
32
|
Xia Y, Zhao M, Chen Y, Hua L, Xu T, Wang C, Li Y, Zhu B. Folate-targeted selenium nanoparticles deliver therapeutic siRNA to improve hepatocellular carcinoma therapy. RSC Adv 2018; 8:25932-25940. [PMID: 35541982 PMCID: PMC9082925 DOI: 10.1039/c8ra04204g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/05/2018] [Indexed: 12/02/2022] Open
Abstract
To obtain a tumor targeting siRNA delivery vehicle for hepatocellular carcinoma treatments, functionalized selenium nanoparticles, Se–PEI–FA, were first prepared by decorating selenium nanoparticles with polycationic polymers, polyethylenimine (PEI), linked with folic acid (FA). FA functions as the tumor-targeted molecule to enhance tumor targeting activity, and PEI conjugates FA and siRNA. Se–PEI–FA@siRNA entered HepG2 cells principally via clathrin-mediated endocytosis. Due to the active tumor targeting effectiveness of FA, Se–PEI–FA@siRNA has significantly higher cellular uptake and gene silencing efficiency, and more apparent cytotoxicity, in HepG2 cells compared with Se–PEI@siRNA. The silencing of HES5 by Se–PEI–FA@siRNA could induce HepG2 cells arrest at G0/G1 phase possibly via inhibiting protein expression of CDK2, cyclinE, and cyclinD1, and up-regulating the protein expression of p21. More importantly, Se–PEI–FA@siRNA exhibits more significant antitumor efficacy compared with Se–PEI@siRNA in vivo. Additionally, Se–PEI–FA@siRNA exhibits low toxicity to the important organs of tumor-bearing mice. This research provides an effective strategy for the design of tumor-targeted nanodrugs against hepatocellular carcinoma. We provide an effective strategy for the design of tumor-targeted nanodrugs against hepatocellular carcinoma by functionalising Se nanoparticles with polyethylenimine linked with folic acid and siRNA.![]()
Collapse
Affiliation(s)
- Yu Xia
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Mingqi Zhao
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Yi Chen
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Liang Hua
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Tiantian Xu
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Changbing Wang
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Yinghua Li
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Bing Zhu
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| |
Collapse
|
33
|
Xia Y, Wang C, Xu T, Li Y, Guo M, Lin Z, Zhao M, Zhu B. Targeted delivery of HES5-siRNA with novel polypeptide-modified nanoparticles for hepatocellular carcinoma therapy. RSC Adv 2018; 8:1917-1926. [PMID: 35542585 PMCID: PMC9077277 DOI: 10.1039/c7ra12461a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022] Open
Abstract
For actively targeted delivery of small interfering RNA (siRNA) to solid tumors, we fabricated functionalized selenium nanoparticles (SeNPs) decorated with the polypeptide RGDfC. Herein, RGDfC was used as tumor-targeted moiety and installed onto the surface of SeNPs to enhance the cellular uptake. RGDfC-SeNPs@siRNA were internalized into the HepG2 cell mainly through clathrin-mediated endocytosis. The active efficacy of the RGDfC-SeNPs@siRNA was confirmed via gene silencing assay, MTT assay and flow cytometry analysis. Owing to the tumor-targeting effect of RGDfC, RGDfC-SeNPs@siRNA achieved an obvious improvement in gene silencing ability, which led to significant growth inhibition of HepG2 cells. Furthermore, treatment with RGDfC-SeNPs@siRNA resulted in greater antitumor efficacy than lipofectamine 2000@siRNA in vitro and in vivo. In addition, the RGDfC-SeNPs@siRNA was almost non-toxic to the key organs of mice. In sum, these findings provide an alternative therapeutic route for targeted cancer treatments. A novel polypeptide RGDfC-modified selenium nanoparticle was fabricated to selectively deliver HES5-siRNA to tumors for hepatocellular carcinoma therapy.![]()
Collapse
Affiliation(s)
- Yu Xia
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Changbing Wang
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Tiantian Xu
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Yinghua Li
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Min Guo
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Zhengfang Lin
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Mingqi Zhao
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Bing Zhu
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| |
Collapse
|
34
|
Huang W, Liang Y, Sang C, Mei C, Li X, Chen T. Therapeutic nanosystems co-deliver anticancer drugs and oncogene SiRNA to achieve synergetic precise cancer chemo-gene therapy. J Mater Chem B 2018; 6:3013-3022. [PMID: 32254336 DOI: 10.1039/c8tb00004b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein we design a therapeutic nanoplatform as carriers of oncogene siRNA and chemotherapeutics to achieve precise cancer therapy.
Collapse
Affiliation(s)
- Wei Huang
- The First Affiliated Hospital
- Jinan University
- Guangzhou 510632
- China
- Department of Chemistry
| | - Yuanwei Liang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Chengcheng Sang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Chaoming Mei
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- The First Affiliated Hospital
- Jinan University
- Guangzhou 510632
- China
- Department of Chemistry
| |
Collapse
|