1
|
Dai J, Zhang Y, Gao T, Lin Y, Tang Y, Jiang Z, Zhu Y, Li L, Ni H. A comparative study of two α-L-rhamnosidases with high sequence identity. Int J Biol Macromol 2024; 277:134174. [PMID: 39084418 DOI: 10.1016/j.ijbiomac.2024.134174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The GH78 α-L-rhamnosidase from Aspergillus tubingensis (AT-Rha) was proved to be a new clade of Aspergillus α-L-rhamnosidases in the previous study. A putative α-L-rhamnosidase from A. kawachii IFO 4308 (AK-Rha) has 92 % identity in amino acid sequence with AT-Rha. In this study, AK-Rha was expressed in P. pastoris and characterized. Similar to AT-rRha, the recombinant AK-Rha (AK-rRha) showed a narrow substrate specificity to naringin. Interestingly, the enzyme activity of AK-rRha was 0.816 U/mg toward naringin, significantly lower than 125.142 U/mg of AT-rRha. Their large differences in catalytic efficiency was mainly due to their differences in kcat values between AK-rRha (0.67 s-1) and AT-rRha (4.89 × 104 s-1). The molecular dynamics simulation exhibited that the overall conformation of AK-Rha was rigid and that of AT-Rha was flexible; the Loop Y-L located above the catalytic domain formed different steric hindrances to naringin, and interacted with the flavonoid matrices at different strengths. The polar solvation energy analysis implied that the glycosidic bond was more easily hydrolysed in AT-Rha. The comparative study verified that the main feature of AK-Rha and AT-Rha represented Aspergillus α-L-rhamnosidase was the narrow substrate specificity toward naringin, and provided an insight of the relationships between their catalytic abilities and structures.
Collapse
Affiliation(s)
- Jiayuan Dai
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yichun Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ting Gao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yanling Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yiling Tang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361102, China
| |
Collapse
|
2
|
Hou J, Lei X, Liu B, Wang Z, Fang G, Liu J, Wang S. A study on the catalytic activity of polypeptides toward the hydrolysis of glucoside compounds gastrodin, polydatin and esculin. J Mater Chem B 2022; 10:9878-9886. [PMID: 36437799 DOI: 10.1039/d2tb01758j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The self-assembly of a series of catalytically active polypeptides toward hydrolysis of glucoside compounds, namely, gastrodin, polydatin and esculin was investigated. These active peptides are composed of two functional fragments: one is the hydrophobic sequence LHLHLRL, which forms assembling segments in the presence of Zn ions (Zn2+); another functional sequence of active peptides are catalytic sites such as Glu (E), Asp (D) and His (H), where carboxylic acids (-COOH) or imidazole groups act like scissors to cleave glucoside bonds of the compounds (according to the acid-base coupling mechanism). The effects of the amino acid sequence of the peptide, Zn2+ concentration, pH and the size or steric hindrance of glucoside compounds on the hydrolytic activity were studied. It was found that the crystalline structure of assembled peptides was crucial to provide the peptide with catalytic hydrolytic activity. Noncovalent interaction index was used to analyse the noncovalent interaction of PEs with glucoside compounds, including hydrogen bonds, van der Waals, and steric effect in the complexes. The binding energy of complexes, the direction and site of nucleophilic attack during deglycosylation processes were also investigated by molecular docking and the electron density Laplace function. This revealed that the differences in the hydrolytic activity of peptides toward glucoside compounds with different sizes originated from different hydrogen bond interactions between the peptides and substrates. These active peptides may find application in the preparation of drugs by de-glycosylation of natural compounds.
Collapse
Affiliation(s)
- Juan Hou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| | - Xiangmin Lei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| | - Borui Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zejiang Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China. .,Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Zhao Z, Zhang Z, Zhang H, Liang Z. Small Peptides in the Detection of Mycotoxins and Their Potential Applications in Mycotoxin Removal. Toxins (Basel) 2022; 14:toxins14110795. [PMID: 36422969 PMCID: PMC9698726 DOI: 10.3390/toxins14110795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins pose significant risks to humans and livestock. In addition, contaminated food- and feedstuffs can only be discarded, leading to increased economic losses and potential ecological pollution. Mycotoxin removal and real-time toxin level monitoring are effective approaches to solve this problem. As a hot research hotspot, small peptides derived from phage display peptide libraries, combinatorial peptide libraries, and rational design approaches can act as coating antigens, competitive antigens, and anti-immune complexes in immunoassays for the detection of mycotoxins. Furthermore, as a potential approach to mycotoxin degradation, small peptides can mimic the natural enzyme catalytic site to construct artificial enzymes containing oxidoreductases, hydrolase, and lyase activities. In summary, with the advantages of mature synthesis protocols, diverse structures, and excellent biocompatibility, also sharing their chemical structure with natural proteins, small peptides are widely used for mycotoxin detection and artificial enzyme construction, which have promising applications in mycotoxin degradation. This paper mainly reviews the advances of small peptides in the detection of mycotoxins, the construction of peptide-based artificial enzymes, and their potential applications in mycotoxin control.
Collapse
Affiliation(s)
- Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoxiang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737055
| |
Collapse
|
4
|
Liang S, Wu XL, Zong MH, Lou WY. Construction of Zn-heptapeptide bionanozymes with intrinsic hydrolase-like activity for degradation of di(2-ethylhexyl) phthalate. J Colloid Interface Sci 2022; 622:860-870. [PMID: 35561606 DOI: 10.1016/j.jcis.2022.04.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Nanozyme with intrinsic enzyme-like activity has emerged as favorite artificial catalyst during recent years. However, current nanozymes are mainly limited to inorganic-derived nanomaterials, while biomolecule-sourced nanozyme (bionanozyme) are rarely reported. Herein, inspired by the basic structure of natural hydrolase family, we constructed 3 oligopeptide-based bionanozymes with intrinsic hydrolase-like activity by implementing zinc induced self-assembly of histidine-rich heptapeptides. Under mild condition, divalent zinc (Zn2+) impelled the spontaneous assembly of short peptides (i.e. Ac-IHIHIQI-CONH2, Ac-IHIHIYI-CONH2, and Ac-IHVHLQI-CONH2), forming hydrolase-mimicking bionanozymes with β-sheet secondary conformation and nanofibrous architecture. As expected, the resultant bionanozymes were able to hydrolyze a serious of p-nitrophenyl esters, including not only the simple substrate with short side-chain (p-NPA), but also more complicated ones (p-NPB, p-NPH, p-NPO, and p-NPS). Moreover, the self-assembled Zn-heptapeptide bionanozymes were also proven to be capable of degrading di(2-ethylhexyl) phthalate (DEHP), a typical plasticizer, showing great potential for environmental remediation. Based on this study, we aim to provide theoretical references and exemplify a specific case for directing the construction and application of bionanozyme.
Collapse
Affiliation(s)
- Shan Liang
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Ling Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Yang Y, Hao S, Lei X, Chen J, Fang G, Liu J, Wang S, He X. Design of metalloenzyme mimics based on self-assembled peptides for organophosphorus pesticides detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128262. [PMID: 35051771 DOI: 10.1016/j.jhazmat.2022.128262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Organophosphorus pesticides (OPs) detection has attracted considerable attention because of the extensive application of OPs. In this research, non-toxic and high-performance metalloenzyme mimics of Zn2+-bonding peptides were developed by obtaining inspiration from phosphotriesterase (PTE) and nanofiber formation. Furthermore, based on the electrochemical activity of p-nitrophenol (PNP), the electrochemical sensor of metalloenzyme mimics was developed. By examining the effect of the active sites of peptides and fibril formation on the degradation of OPs, the optimal metalloenzyme mimic was selected. Furthermore, optimal metalloenzyme mimics were combined with NiCo2O4 to develop an electrochemical sensor of OPs. By monitoring square wave voltammetry (SWV) signals of PNP degraded from OPs, the amounts of OPs in actual samples could be determined in 15 min. We discovered that both the active sites of α metal and β metal were required for metalloenzyme mimics; Zn2+ promoted peptide fibrosis and especially acted as a cofactor for degrading OPs. Compared to traditional methods, the electrochemical sensor of metalloenzyme mimics was sensitive, reliable, and non-toxic; furthermore, the detection limit of methyl paraoxon was as low as 0.08 µM. The metalloenzyme mimics will be a promising material for detecting OPs in the food industry and environment fields.
Collapse
Affiliation(s)
- Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiangmin Lei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, PR China.
| | - Xingxing He
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| |
Collapse
|
6
|
Hamley IW. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021; 22:1835-1855. [PMID: 33843196 PMCID: PMC8154259 DOI: 10.1021/acs.biomac.1c00240] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Peptides and their conjugates (to lipids, bulky N-terminals, or other groups) can self-assemble into nanostructures such as fibrils, nanotubes, coiled coil bundles, and micelles, and these can be used as platforms to present functional residues in order to catalyze a diversity of reactions. Peptide structures can be used to template catalytic sites inspired by those present in natural enzymes as well as simpler constructs using individual catalytic amino acids, especially proline and histidine. The literature on the use of peptide (and peptide conjugate) α-helical and β-sheet structures as well as turn or disordered peptides in the biocatalysis of a range of organic reactions including hydrolysis and a variety of coupling reactions (e.g., aldol reactions) is reviewed. The simpler design rules for peptide structures compared to those of folded proteins permit ready ab initio design (minimalist approach) of effective catalytic structures that mimic the binding pockets of natural enzymes or which simply present catalytic motifs at high density on nanostructure scaffolds. Research on these topics is summarized, along with a discussion of metal nanoparticle catalysts templated by peptide nanostructures, especially fibrils. Research showing the high activities of different classes of peptides in catalyzing many reactions is highlighted. Advances in peptide design and synthesis methods mean they hold great potential for future developments of effective bioinspired and biocompatible catalysts.
Collapse
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, RG6 6AD Reading, United Kingdom
| |
Collapse
|
7
|
Li X, Li J, Hao S, Han A, Yang Y, Fang G, Liu J, Wang S. Enzyme mimics based membrane reactor for di(2-ethylhexyl) phthalate degradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123873. [PMID: 33264945 DOI: 10.1016/j.jhazmat.2020.123873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), the most abundantly used plasticizer, was considered to be a hazardous chemical that was difficult to be degraded naturally. In this study, inspired by the "catalytic triad'' in serine proteases, an enzyme mimic material was developed by combining the proteases's active sites of serine, histidine and aspartate (S-H-D) with the self-assembling sequence of LKLKLKL and the aromatic group of fluorenylmethyloxycarbonyl (Fmoc). By mixing the monomer of peptides containing separate S, H and D residues with a ratio of 2:1:1, the enzyme mimics were found to co- assemble into nanofibers (Co-HSD) and showed the highest activity towards DEHP degradation because of the synergistic effects of active sites, orderly secondary structure and stable molecular conformation. To further improve ability and applicability, the high active mimetic enzyme was immobilized onto regenerated cellulose (RC) membranes for DEHP degradation in a continuous recycling mode. The RC membranes were first functionalized by the NaIO4 oxidation method to form aldehyde groups and then conjugated with the enzyme mimics via Schiff-base reaction. As a biocatalytic membrane, this membrane could not only effectively degrade DEHP, but also showed good stability, thus establishing a promising biomaterial for large scale biodegradation of DEHP in water decontamination and liquid food depollution.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jianpeng Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China; Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
8
|
Liu Y, Cao X, Liu Z, Sun L, Fang G, Liu J, Wang S. Electrochemical detection of organophosphorus pesticides based on amino acids-conjugated P3TAA-modified electrodes. Analyst 2021; 145:8068-8076. [PMID: 33078789 DOI: 10.1039/d0an01838d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, amino acids (AAs) including serine (S), histidine (H) and glutamic acid (E)-conjugated poly(3-thiophene acetate acid) (P3TAA) were synthesized to promote the catalytic hydrolysis and in situ electrochemical detection of organophosphorus pesticides (OPs). The hydrolysis of OPs followed the mechanism of proton transfer relay composed of AAs of S, H, E, called the "catalytic triad", found in biomimetic hydrolases. P3TAA was used as a carrier to attach S, H, E, and these AA sites have the hydrolysis activity of Ops; the polymer P3TAA-AAs behaved like biomimetic enzymes. After the hydrolysis of OPs (e.g., methyl paraoxon, ethyl paraoxon and methyl parathion), p-nitrophenol (PNP) was generated, which can be detected electrochemically. Herein, an electrochemical method using P3TAA-conjugated S, H, E-modified electrodes for the determination of OPs was developed. OPs can be quantified by the electrochemical responses of PNP. This technique was selective toward OPs with the p-nitrophenol group. The detection limit of OPs (methyl paraoxon, methyl parathion and ethyl paraoxon) reached 0.5 μM. This detection technique was successfully applied to the detection of OPs in real samples with high detection accuracy.
Collapse
Affiliation(s)
- Yuhui Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang J, Zhang J, Wang J, Fang G, Liu J, Wang S. Fluorescent peptide probes for organophosphorus pesticides detection. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122074. [PMID: 31978818 DOI: 10.1016/j.jhazmat.2020.122074] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Extensive use of organophosphorus pesticides (OPs) in crop protection has aroused worldwidely great concern about safety and the detection of OPs is of great significance to food safety and human health. In this work, peptides attached with tetraphenylethylene (TPE) molecule were synthesized to from an aggregation-induced emission fluorescent probe (TPE-Peptide) for the determination of OPs. The working mechanism was as follows: in presence of OPs, OPs would react with active site serine in the peptide sequence via covalent bond and adducts were formed between OPs and the peptides; once formed, the adducts accelerated the aggregation of peptides, thus inducing strong emission of TPE-Peptide probe. So the adducts formation and the enhanced emission of the TPE-Peptide probe were the key factors for the OPs' sensing. Herein, the adducts formed between OPs and TPE-Peptide probe, the aggregated peptide fibrils were characterized by fluorescence, mass spectrometry, transmission electron microscopy, dynamic light scattering, atomic force microscopy, circular dichroism spectra and confocal fluorescence microscopy etc. This TPE-Peptide probe displayed highly sensitive fluorescence response where OPs' concentrations ranged from 1 to 100 μM with the limit of detection 0.6 μM and also showed selectivity.
Collapse
Affiliation(s)
- Jianying Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jiaying Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jing Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China; Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
10
|
Li X, Li J, Hao S, Han A, Yang Y, Luo X, Fang G, Liu J, Wang S. Enzyme mimics based on self-assembled peptides for di(2-ethylhexyl)phthalate degradation. J Mater Chem B 2020; 8:9601-9609. [DOI: 10.1039/d0tb01931c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enzyme mimics inspired by serine proteases are developed through self-assembled peptides to degrade di(2-ethylhexyl)phthalate (DEHP).
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Jianpeng Li
- School of Food Science and Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Ji’nan
- P. R. China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Xiaoyu Luo
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
- Research Center of Food Science and Human Health
| |
Collapse
|
11
|
Sugano Y, Kuittinen S, Turunen O, Pappinen A. Amino acid-functionalized carbon nanotube framework as a biomimetic catalyst for cleavage of glycosidic bonds. BIOINSPIRATION & BIOMIMETICS 2019; 14:036007. [PMID: 30708363 DOI: 10.1088/1748-3190/ab03de] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, carbon nanotubes (CNTs) functionalized by acidic amino acids were used as a framework, which aims to form a mimetic structure of an active site of the glycoside hydrolases. It was demonstrated that the glycosidic bonds of the disaccharides were cleaved by the fabricated biofunctionalized CNTs. It was implied that the number of carboxyl groups and their individual pKa values in the amino acids, and the distance between the NH2 and the side chain carboxyl groups of the amino acid are predominant factors for determining the reaction efficiency and the optimum pH. It was suggested that glutamic acid functionalized CNTs framework showed the highest efficiency in the cleavage of glycosidic bond of cellobiose than other acidic biomolecules. It was also suggested that the glutamic acid functionalized CNT framework showed preference to the types of glycosidic bonds in the following order: β-1,2-glycoside > β-1,4-glycoside > α-1,4-glycoside [Formula: see text] α-1,1-glycoside bond.
Collapse
Affiliation(s)
- Yasuhito Sugano
- Faculty of Science and Forestry, School of Forest Science, University of Eastern Finland, Yliopistonkatu 7, FI-80101 Joensuu, Finland. Faculty of Engineering, Department of Industrial Chemistry, Tokyo University of Science, Shinjuku-ku, 162-0826, Tokyo, Japan
| | | | | | | |
Collapse
|
12
|
Zhu M, Wang M, Qi W, Su R, He Z. Constructing peptide-based artificial hydrolases with customized selectivity. J Mater Chem B 2019. [DOI: 10.1039/c9tb00408d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substrate selectivity of peptide-based artificial enzymes can be customized by combining molecularly imprinted polymers as binding sites with peptide nanofibers as catalytic moieties.
Collapse
Affiliation(s)
- Mingjie Zhu
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| |
Collapse
|
13
|
Abstract
Self-assembly of molecules often results in new emerging properties. Even very short peptides can self-assemble into structures with a variety of physical and structural characteristics. Remarkably, many peptide assemblies show high catalytic activity in model reactions reaching efficiencies comparable to those found in natural enzymes by weight. In this review, we discuss different strategies used to rationally develop self-assembled peptide catalysts with natural and unnatural backbones as well as with metal-containing cofactors.
Collapse
Affiliation(s)
- O Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA.
| | | | | |
Collapse
|
14
|
He X, Zhang F, Liu J, Fang G, Wang S. Homogenous graphene oxide-peptide nanofiber hybrid hydrogel as biomimetic polysaccharide hydrolase. NANOSCALE 2017; 9:18066-18074. [PMID: 29131232 DOI: 10.1039/c7nr06525f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cellulose, an impressive potential sustainable fuel, is difficult to hydrolyze because of the protection of β-1,4-glycosidic bonds through the tight hydrogen bonding network. In this study, homogenous graphene oxide (GO)-peptide nanofiber hybrid hydrogels (GO-PNFs) were designed as a β-glycosyl hydrolase mimetic to achieve efficient degradation of cellobiose and cellopentaose. For comparison, free peptides, graphene oxide mixed with free peptides (GO-peptdies) and self-assembled peptide nanofibers (PNFs) were also studied for their activity as a hydrolase mimetics for degradation of cellobiose. Among these materials, GO-PNFs showed the highest hydrolysis activity. Transmission electron microscopy, atomic force microscopy, fluorescence analysis, circular dichroism spectroscopies, X-ray diffraction, Raman spectra and computational modeling were used to interpret the difference in activity mechanism in these artificially designed enzymes. These investigations suggested that high catalytic performance of GO-PNFs toward cellobiose and cellopentaose hydrolysis could be attributed to the formation of nanofiber structures of peptides, optimal molecular conformation and less steric hindrance to access the substrate. More importantly, GO not only served as a platform for attaching PNFs, but also created a hydrophobic microenvironment and facilitated proton transfer, an essential step in catalytic hydrolysis, thus enhancing catalytic activity. All these provided insights into the potential use of peptides and GO hybrid composite nanoenzymes in efficient cellulose hydrolysis.
Collapse
Affiliation(s)
- Xingxing He
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | | | | | | | | |
Collapse
|